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A new approach to the kinetic theory of plasmas is

presented. This approach is based upon the hierarchy of

equations obtained from the Liouville equation by integration

over position coordinates. A generaiizat__RaFer
cluster expansion is used to rewrite the distribution function

in terms of a set of generalized correlation functions. The

resulting hierarchy of equations share with the Liouville

equation the characteristic that they are linear, and each may

be solved by a straightforward operator method. The final

reduction in description i_ Accnmpl_bed by _ntegratIng the

solution over the unwanted velocity coordinates. T._ee

problems are studiedF First, the initial reaction of the

plasma to the presence of a small amplitude disturbance is

shown to agree with the predictions of Landau. Second, a

general kinetic (master) equation is derived for a spatially-

homogeneous, stable plasma in the limit that the plasma

parameter is small but not zero._ This general equation, first
derived by McCune, is shown explicitly to reduce, after inte-

gration over N-I velocities, to the kinetic equation of

Balescuand Lenard. Finally,_the behavior of an unstable

collisionless plasma is considered. The hierarchy of

equations may be solved, in the limit that the plasma para-
meter approaches zero, to obtain an explicit solution for

the distribution function which includes all wave-coupling
effects. The solution is shown to reduce to a form which

agrees with the results of quasi-linear theory in the limit

that the initial amplitude and growth rate of the disturbance

are small. The• application of the method to the problem of

a strongly-unstable plasma is briefly discussed.\
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NOMENCLATURE

Several symbols defined In the text and used but briefly

are not included in thls list.

COlt)

C_.(i)

e

Lt_p)

N

7o

t

eq. (7.2-7)

eq. (7.2-11)

electric field

electronic charge

ensemble distribution function

generalized correlation function

spatlally-homoEeneous part of slngle-partlcle

function

slngle-partlcle function

wave vector

eq. (3.2-21)

number of particles in the system

number density

Laplace transform variable

momentum of I th particle

position of unstable root In p-plane

(see eq. (7.2-8))

eq. (7.2-9)

eq. (7.2-1)

Debye length

tline
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V

V

E

o_

intermolecular potentlal

component of velocity of ith particle parallel

to the wave vector

volume of system

phase velocity of wave

velocity of ith particle

position of ith particle

growth rate of unstable mode

plasma parameter

eq. (3.2-2_)

parameter used to order amplitude of initial

disturbance

spatially homogeneous part of distribution

function at t = 0

eq. (3.2-25)

Fourier transform of intermolecular potential

frequency of _ th mode

plasma frequency

Operators

H

eq. (3.2-4)

eq. (3.2-4)

eq. (2-17)

eq. (3.3-3)

eq. (3.2-13)

eq. (2-3)
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(,It)

V

V I

eq. (;-i.. 2-_9 )

eq. (2-3)

eq. (2-3)

eq. (2-17)

eq= (4.2-6)

eqo (7.2-1'/')

eq. (2-17)

eqo (5.3-1)

eq. (7._.2-5)

eq. (3.2-1)

Table I

eq. (2-17)

Table I

eq. (8-9)

eq. (3.2-8)

eq. (3.2-26)

Superscripts

denotes integration over velocity

denotes a vector quantity

denotes complex conjugate



CHA_rER I

INTRODUCTION

A charged particle in a fully-ionized plasma interacts

simultaneously with a large number of other particles.

While most of these interactions are weak, the combined

effect can be siEnificant, giving rise to the so-called

"collective" phenomena In plasmas. In addition to the large

number of weak interactions, there are a small number of

strong interactions that produce large deviations in the

trajectory of a particle. The latter interactions give

rise to such phenomena as microscopic density fluctuations

and bremstrah_lung emission and absorption in the plasma.

A kinetic theory description of a plasma _u_t include in a

systematic way the effects due to these two extreme types

of interactions between particles. One statistical mech-

anical treatment of a system of N-particles has been for-

mulated by Gibbs. I The particles are viewed classically

as charge and mass localized at a (moving) point in space,

and each is assumed to interact with the N-I particles through

the laws of Newtonian mechanics. An ensemble of similar,

non-interacting systems is introduced, and each system of
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the ensemble is represented by a point in a 6N-dlmenslonal

phase space. The number o_ systems is assumed to be so

larEe that the cloud of points in phase space may be repre-

sented by a distribution function which is continuous in

the 6N vax_ables. The tile rate of chanEe of the ensemble

_ctlon is governed by the Llouwiile equation, which pre-

scribes that the systems of the ensemble can nelther be

created nor destroyed.

Much effort has been directed towards finding a solu-

tion to the Llouville equation° Due to the complexity of

this equation one seeks, at the present time, an approxima-

tion to the solution. The approximations that are in common

use are based upon the possibility of sorting out the

simpler from the more complex (but less likely) interactions.

Practically, one has used either a hierarchy of equa-

tions, the BBOK_ "3'4"5"6 hierarchy, obtained from the

Llouvllle equations by an integration over position and

velocity coordinates, or a diagram met_od of one kind or

another 7'8'9 to represent a direct solution of the Llouville

equation. The first approach takes advantage of the obser-

vation that all quantities of interest can be determined

_rom the reduced functions _ which are obtained from the

ensemble distribution function by an integration over N-S

velocity and position coordinates. The level of description

of the problem is therefore reduced immediately by integra-

ting the Liouville equation over N-S velocity and position
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coordinates. The result is a system of coupled equations

(the BBGKY hierarchy) in which the equation for the function

has a term which contains _! so on.and No simpli-

fication has been achieved at this point except throuEh the

explicit use of the symmetry properties of the distribution

f_nctions. The problem has simply been transformed from

that of solving the Liouville equation to that of solving

a system of N coupled equations. In order to obtain a

simplification of the equations it is necessary to introduce

some assumptions which enable one to compute the lower

order functions _ , _ , ... without knowing the higher

order functions _ , _ , .... These assumptions usually
_J "7

take the form of a Mayer cluster expansion I0, as well as

an ordering of the successively higher correlation func-

tions in terms of some small parameter appropriate to the

system. The problem is reduced in this way to that of

solving the first two or three equations of the hierarchy.

For a plasma the appropriate small parameter is the inverse

of the number of particles in a I)ebye sphere -- often called

the plasma parameter. In the limit that the plasma para-

meter approaches zero the correlations are assumed to

vanish altogether and the entire BBGKY system of equations

is reduced to its lowest member, the non-linear Vlasov

equation. The neglect of correlations in this limit is

equivalent to neglecting interparticle collisions in an

ordinary gas.
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An alternative approach (the diagram method) is taken

by Prigogine, Balescu and Brout. 7'8'9 A direct solution of

the Liouvllle is obtained first and the reduction of the

level of description comes only after the solution has been

obtained. The advantage of formulating the problem in this

_uer is that the Liouvliie equation is linear, and the

investigator has at his disposal the well-established tech-

niques for solving linear partial differential equations.

The solution is expressed in the form of an infinite series

of increasingly complicated terms@ Diagrammatic methods are

required to simplify the notational problem. Finally, the

dominant contribution to each term of the solution is deter-

mined on the basis of certain criteria which serve to

define the problem.

A somewhat different approach to the kinetic theory

of a plasma is presented in the following Chapters. The

starting point is the hierarchy of equations obtained from

the Llouvllle equation by an integration over the position

coordinates only. This system of equations, derived by

Hig_ins ll and NcCune 12 has been used by NcC_._e to derive

the master equation for plasmas. The distribution functions

in the hierarchy depend upon all N momentum and _ position

coordinates. The functions are written in terms of gener-

alized correlation functions, a procedure whi¢h can be

viewed as a generalization of the Mayer cluster expansion.



=5=

A new system of equations is obtained for the correlation

functions. Each equation of this hierarchy is coupled to

four other equations. However, all are linear. Even wave

coupling effectsappear in a linear way in this formulation.

While the equations are to be solved at this level of

description, considerable simplification of the solution is

achieved subsequently by integrating the solutions over the

"unwanted" velocity coordinates.

The above approach has two characteristic features.

First, as mentioned above, the equations of the hierarchy

are coupled. For the general case where the plasma para-

meter _ is small (but not zero) it is necessary to include

ar_nent8 similar to those used with the B_GKY hierarchy in

order to truncate the system of equations and to reduce the

problem to the solution of the two or three lowest members.

Second, the basic equations are linear and may be solved by

simple operator methods. To illustrate this advantage we

shall consider in Chapters 5 - 8 a plasma in the

collisionless limit (_--_0) where the B_KY hierarchy,

as already mentioned, reduces to the non-linear Vlasov

equation (under the assumed Mayer cluster expansion).

While the approach described above has much of the gen-

erality of the approach of Prigogine, et. al., it has two

distinct advantages over the latter. First, the number of

terms is not so large as to require the introduction of

diagrams. Second, the choice of the dominant terms in the
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_ _i_

solution can here be made on clear physical grounds whereas

the basis for the choice of the dominant diagrams of

Prigogine, et.al., is often somewhat obscure.

Before proceeding, let us briefly discuss an alter-

native view of plasma statistical mechanics which could be

adopted, based upon the "exact distribution function" for

a Eiven system of N point particles .* The evolution in time

of the exact distribution function is governed by the Vlasov

equation. 13 In Eeneral, the distribution must be treated as

a random function of time 14'15 , and the Vlasov equation

must be aYeraged over an ensemble of systems. The result is

a hierarchy of equations in which each equation is coupled

to the one which follows it. This hierarchy is equivalent

to the BBGKY hierarchy. Dupree 16'17 has shown that a con-

sistent ordering of the terms in the system of equations is

possible, and that the (small) plasma parameter _ can be

used to prescribe a systematic perturbation procedure for

obtaininE a solution valid to any order.

The "exact distribution function" is for the classical

plasma discussed here a sum of N delta functions

where _i_ is the trajectory of the _ th particle in

velocity and position space.
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While the approach based upon the Liouville equation

differs somewhat in point of view and methodology from the

above approach based upon the Vlasov equation, the results

of both are in complete aEreement o We adopt henceforward

the first point of view and seek approximate solutions to

the Liouvilie equation by an extension of the methods of

McCune.

Three problems are to be studied° First, the initial

value problem of a small amplitude disturbance in a collision-

less plasma is considered. The equations of the hierarchy

are found to reduce to particularly simple forms, and each

may be solved independently of the others. The solution for

the single-particle distribution function agrees, to within

terms that are small in the limit that the number of particles

becomes large, with that obtained by Landau to the linearized

18
Vlasov equation° The solution to the first problem assumes

a central position in the theory° The methods developed

are illustrative of the methods employed in later chapters

to solve more complex problems o Also the first problem

serves as a simple introduction to the more complicated

general operators which appear at later stages°

The second problem is that of studying for a stable,

spatially homogeneous plasma the general kinetic (or master)

equation derived by McCune. We show in Chapter _" that

when the level of description is reduced by an integration

over N-1 velocity coordinates McCune's kinetic equation
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becomes identical with that obtained by Balescu 19 and

Lenard 20. Finally, the "bump-in-tail" instability 21 in a

collisionless plasma is discussed. The equations are again

simplified in the limit that the plasma parameter approaches

zero. Each member is coupled only to the two which come

directly after it in the hierarchy. Since the equations are

linear, each can be solved by a generalization of the

operator method introduced by Dupree. 22 The solutions are

then combined to write the complete solution for the single-

particle distribution function in terms of the initial condi-

tions on the problem. This approach eliminates the need for

the adiabatic hypothesis or multiple time scales usually

required for this type of problem. The solution is simplified

by assuming the initial amplitude and growth Pate of the

unstable disturbance to be small and the time not too large.

The results ape found to agree FoP an "intermediate" period

oF time with those obtained From quasi-linear theorT. 23"24

A simple emthod is proposed to calculate the Erowth and

self-ll_ting oF a weakly-unstable disturbance. The results

oF the approximate calculation ape Found to compare favorably

with the numerical calculation oF Drummond and Pines o 23
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CHAPTER 2

HIERARCRT OF EQUATIONS FOR THE GEKERALIZED

CORRELATION FUNCTIONS

We consider an ensemble of systems of charEed particles.

In the interests of simplicity we llmlt ourselves to the

case of a single species of charged pax_Icles in a neut_al-

Izing ba@kgm_ound of _bile particles. There are to be N

such psmticles, each of which has associated with it a

position coordinate and a momentum coordlnate _" .

The Eas is assumed to be "classlcal", that is quantum mech-

anical and relatlvlstlc effects may be neglected o The

theor7 is thus not appllcable to the very hIEh temperatume

plasmas, such as therlaonuclear plasmas, in which radiation

fTom relatlvlstlc particles constitutes an Important part

of the enerEy of the system. It can, however, be applied to

the relatlvely cool plasmas, such as the solar wind where

T "_1 o K.

The distribution of systems within the ensemble is de-

scribed by /&-_{_JJt)_ which is a Punctlon of N (vector)

position coordinates and N (vector) momentum coordinates.

The particles are assumed to be Indlstlngulshable so that
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,F [.J_.)!t,) is symmetric to the Lnterc_nge of any pair

of indices. All quantities are non-dimensionalized by lntro-

duc_n_ a length which characterizes the range of interaction

between particles and a frequency which characterizes the

time scale on which microscopic changes take place. These

plasma quantities are assumed to be the Debye length /_

and the plasma frequency A)/o .

The special case of no external force fields is considered.

Furthermore, since we are interested in those properties of

the plasma which are independent of the size of the container,

the walls are removed to infinity in such a way that the

N
mean number density of particles /_ = -_ is a constant. Ir

_3 << _ , edge effects may be neglected.
V

The reduced function / (_#Jlt) is obtained from the

ensemble distribution f_nction by an integration over N-

spatial variables.

We adopt the notation that / _'_'_'J'#f) is a function of

A velocity and B position coordinates. The indices in the

set { B} are associated with both position and velocity coor-

dinates; those in the set _ A-B} with velocity coordinates

only. While the ensemble function __It) is

symmetric to an interchange of any two indices, the reduced

functions _ (_u_Jf) are symmetric only to the interchange
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of Lnd!ces witbln the sets {'Jj_ and {N-_ _} . It iS not

symmetric to an interchange of indices between these two

sets.

The followlnE equation for the function F _ /_v}It)has

been derived by Hi.ins 11 and IcCune. 12 It is obtained

from the Liouville equation by an inteEl_atton over N-

spatial coordinates (see eq. (10) of ref. (12)).

Jt + X F rf_/O - 6- _ F Fly}It)=

where

=
?--/

The non-d_menslonal potentlal /-,-'/_. , assumed to be a spherl-

cally-symmetrlc f_mctlon of the distance between the points

and , has been measured in units of C y_ .

The symmetry of the reduced functions -- _'_-[_}/t) and

the condition that _- 6{_ It) vanish at the boundaPles of



- 12 -

the phase space have been used in the derivation of (2-2).

Equation (2-2) is the _-_ member of a hierarchy of equa-

tions in which each is coupled to two higher equations (in

contrast to the BIKlKYhierarchywhere each member is coupled

to only one higher equation).

The generalized correlation functions

defined in the following way.

(_z_lt) are

_o ,,v;o

r,_/_)=/-_'t) ,-/ ,',,_),-tr:/_-) . / I,,_J_) (2-4)

= *t;'_/_'_ .t,',=/_-)
-_2

. l=_l#J +F (J=_JtJ
I

The relations (2-4) may be considered a generalization of

the Mayer cluster expansion. I0 To show the relation to the

Mayer cluster expansion, the expression (2.-J4) for ;_(/;ZI_-)

is integrated over the N-2 "spare" velocity coordinates.

(2-5)

The Mayer cluster expansion for the two-particle distribution

function is

•2,2 4/ _6/
(2-6)
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where / r/It/ is the slngle-partlcle f_utctlon and _/,_ItJ

the correlation f_mctlon. We write _-61/It ) as the sum

of a spatlally-homogeneous part _II_) and a spatially-

lnhoaogemeous part /_/I_ ) and substitute into (2-.6)

(e-'r)

When the result (2.-7) is compared with (2_5) we find

/r,,/tj
S,,

r:Jt)

o_JtJ: f, o,_Jf,r:Jt_ ÷<fO_sO

The f_nctlon t 1"121_') thus contains the efSects oS

correlations between the particles 1 and 2. It at any time

= f (/I _') / / f) then the particles

1 and 2 are statistically independent.

A hierarchy oS equations Sot the generalized correlation

Dunctions is obtained by substitutinK the expressions (_._)

into the hierarchy (2.-2). The equation Sot -/_°_t) is

slmpliSled by noting that the interaction potential _f. is

spherically symmetric. ThereSore, the only part of _ _'1_)

that remains aster the lnteErations over _. and _ is

-p_"_D,.irj ...,,_,. f_.,,d
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z_
The second equation of the hierarchy (2-,2), rewritten in

terms of the generalized correlations (2-4), may be simpli-

fied by using (2_9) and the spherical symmetry of_. with

the following result.

_f c,,,)._'Fr, Jt)- EXr_-_ /0.1_)"'
at ,/.._2 1/ Y-(j3 =

[j_,,J v _z_#q-r2q_-) (_.lO)
AI 3 " -_

*_T J-V-

The generalized single-particle f%mctlon J (lit)

by (2-,10) to the tw___ohigher tbmctions _ {/iltJ and _ ('z_'ld-.)

If the relations (2_9) and (2_10) are used to eliminate

is related

some terms from the third equation of the hierarchy, we find

the following equation for _ltJ "



- 15 -

This result may be simplified somewhat if we consider the

order of magnitude of the term

(2-.12)

The range of the interaction potential _' is assumed to

be of the order of the Debye length so that _. is very

non-dimenslonalized with respect to the Debye length).

Thus, we may characterize the order of magnitude of the term

(2_12) in the following way

_3_ ,%/ ,,
(2,,13)

/ ^St

where 12-(/-_)f [//t)/_v is the average value of the inte-

grand of (2-12) inside a sphere with a radius of one Debye

length centered at the point X a o We can write, from the

_3
definition (2=3) of 6 , 6 _-_r= ,_N • We see from (2-13)

that the term (2.-12) becomes vanlshingly small in the limit

N -_ o_ and may therefore be dropped from the equation

(2-11). There are other terms of the form
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N .. :__., 'V,2

6j J v
(2-14)

on the rIEht-hand side of (2-11). Each term of the sum

(2-14) is, by the arEuments presented above, of order (_N) -

However, since there are N such terms their combined effect

,__ ,,^_,3

is of order (i(lj)_(l_j))_ v , and they cannot be discarded

from equation (2-11). The equation for ?_'q(/_) becomes

where terms of 0"(_) have been dropped. We find from

(2-15) that the two-partlcle function is coupled to four other

functiO_a, the two (TN'_),??/I#)) that come Just before it in

r,_3 .,N//

the hierarchy and the two ( f' that come Just

after.

If these same arguments are used to obtain an equation

for ?_('_3/t)-- we find (the error is now of 0('_) )



- 17 -

We see that the three-particle f_mctlon Is coupled to four

other functions. As wlth the generalized two-particle

t%mctlon, these functions are the two (?L(i/_) , f(_'lz") )
_,q ,

which come Just before and the two (_(i[..#m/t.)_,_/ ,vv,F/" @-"8 )
which come Just after 2_(1_31_-J In the hierarchy. We find

the same result In the general case. The _J_--- equation may

be written in the following formal way (terms of order (_

have been discarded)

The hierarchy of equations, of which (2.-17) ls the _--_

member, has several important properties. Flrst, the equations
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are quite general in that no special assumptions have been

made about correlations in the plasma. Second, the equations

are linear. The introduction of the generalized correlations

(2_4) was chosen in such away that the resulting hierarchy

would retain the linear nature of the Liouville equation.

Third, the differential and integral operators in (2-17)

are independent of time, a property which, as we will see,

enables one to solve the problem of a weakly unstable plasma

without the use of an adiabatic hypothesis or multiple time

scales.

operator

and _I

variable X i

Finally, we shall see in the next Chapter that the

_ p_/ .
_ 2 _ in the equation for _ [�it] ( _

are related by a Fourier transform in the spatial

) is selr-adJoint.
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cm_P_m_ 3

SHORT_TI.W_ BEHAVIOR OF A S_T-L-AMPLITUDE DISTURBANCE

3 •1 Introduction

We consider the time-response of a small-amplltude elec-

trostatic disturbance in a spatlally-uniform collislonless

plasma (there is no na_etic fleld). With the assumption

that the amplitude of the disturbance is small, the equations

of the hierarchy can be decoupled (in the limit _-_ C) )

and each equation solved independently of the others. The

equation for the generalized slngle-partlcle function may be

written in matrix notation. We show that the operator

V = -i in the equation for T(/It_ is self-adJolnt,

which implies that the eigenvalues of the operator are real

and the solution r_mains bounded in time. Thus, the theory

as formulated has a mathematically stable nature even when

the initial conditions are such that the amplitude of the

disturbance initially begins to grow.

However, as we shall see, the self-adJolnt properties

of the operator matrix represent information which is

inaccessible to the theory when the level of description is

reduced by an integration over the N-I extra velocity
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t_tIrt,.=o: Olb) ,,,.,g1,ot,_coordinates. We show

the solution for the single-particle function /_(/1[_)

agrees for "short" times with that obtained by Landau, and

it can therefore represent "stable" or "unstable" behavior

in the sense of the usual linearized theory, of the Vlasov

equation. As ls well known, the Landau solution of the

initial value problem exhibits unstable behavior for certain

plasma equilibria. The amplitude of the disturbance, accord-

ing to the linearlzed theory, continues to Bow indefinitely.

In order to reconcile the possibility of the continued growth

of /_[llt) with the establlshed 12 self-adJolnt properties

of the operator matrix V we show that the discarded terms

¢_or Ol_) _ , .high addllttl,toth,b,_o, or

the plasma for times observable in the laboratory, contribute

in an important way to the mathematical properties of the

matrix.

The solution for the generalized single-particle function

may be rewritten by introducing the operator _[l_t) which

relates the function I_) to its Initial value. The

usefulness of the _(/}_) operators becomes evident when

we show that the solution for the ]) -particle function may

as a product of I) _ [/_t) operators acttnEbe written

on an appropriate initial value function° The Integration

over the N-l) extra velocity coordinates reduces the solution

to a product of the single-particle propagators --/_(I)_)

first discussed by Dupree. 22 The methods used to obtain the
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forms oftheoperatorsqr/It)and _PJt) Illustrate

the general procedure employed in later chapters to solve

more complex forms of the equations of the hierarchy, thus

yielding solutions valid for times longer than those treated

in the present chapter.

3.2 Short-Time Behavior of the Single-Particle Function,

The hierarchy of equations (2-17) for the generalized

correlation functions may be simplified if the amplitude of

the disturbance is assumed to be small. A parameter O-

associated with the amplitude of the initial disturbance is

used to order each term oT the hierarchy. 7V_O_) is

considered to be of 0[_) . For a small initial disturbance

of the homogeneous state the function 7" /'/If) is taken

of order O-- since it contains the spatial coordinates of a

single particle, _ _/_I_) is of 0(0 -2) and so on. With

the above ordering procedure the terms on the left-hand side

orequation(2-1o)for /(/I_)areor0(_), andtheterms
#'%

on the
right, which involve the functions 7L//[_-) and

assumption that 6- is very small is used to Justify neElect-

inE the terms from the rIEht-hand side of (2.-10) and to
AN/

reduce the equation for _ _/_) to the following homo-

geneous form.

_)F,',,t)- '-",'
"- +X/,';,t,-eZ -o (3.2- l)
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The Fourier transform of the function

(3.2-2)

is introduced to further simplify the equation for the single

partlcle function. We find, from (3.2-1)

where the relation

nate the parameter

(3.2-3)

E

3

_ = _/_ has been used to elimi-

. The function _ _(K) is the

Fourier transform of the lntermolecular potential. For the

Coulomb potential _K) =_ • To simplify the writing we

introduce the operators

(3.2-4)

Equation (3.2-3), rewritten in terms of the operators (3.2-_),

becomes

(3.2-5)

The mathematical properties of equation (3.2-5) are most

easily investigated by rewriting it In matrlx notation. We
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introduce the N-dimensional column vector

iI

r_ l .

_ _l /

,nN, I

ct)

(3.2-6)

and write the equation for the time rate of change of f(t)

as

=0 (3.2-7)

The N x N-dimensional

to be

operator matrlx V has been defined

,_q -_r,,; - - . -k_,,s>

- K_ . • . - t'_tv)

s

are real.where the elements of the operator y

is antisymmetric (_2_-.CI3) = -_Z)_(,_/) ).

The adJolnt V

(3.2'8)

The matrix

- of the operator '_ is defined by the
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relation 25

(3.2-9)

where _fAIB} is the N-dimensional inner product or the

vectors A* and B (the superscript * denotes the complex

conjugate). The properties of the matrix (3.2-8) can be used
A

to establish that the operator _ is self-adJoint (V =V)-

It follows that the eigenvalues -_ofVare real 25, and the

corresponding eigenTectors _(_) are neutrally stable

functions of time (substitute any eigenvector for_(_ in

(3.2-7) and use the relatlcn y_l = A.___ ). IF!nally,

solutions of the equation (3.2-7) remain bounded in time. 25

For illustrative purposes the eigenvalue problem for

the special case N=2 is Lnvestigated in some detail in

AppendlxA. The eigenvectors, which form a complete set,

are used to write a solution to equatlon (3.2-7) (for N= 2)

which satisfies arbitrary initial conditions.

However, for large N the stable behavior of _'(/]_) at
l " -

the N-momentum level is essentially lost to the theory when

the level of description is reduced to a single velocity and

spatial coordinate.

The solution for _ [/_ may be found in terms of

its initial value by taking a Laplace transform of (3.2-7)
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in time. We introduce the transformed function (Re p > 0)*

_7__'_ - -p_r#,/

N/

and rewrite the equation for /_0170)
as

(3.2-zo)

._ _,/ N .w,l

= o) (3.2-ll)

Both sides of (3-2-II) are divided by the quantity _//_,A,7/,
1 --

and the column vector 2(p) , which is the Laplace transform
rg/

of the vector _ (t) , is introduced to obtain the new

matrix equation.

(3.2-].2)

i is the unit matrix.

matrix ,.SS(p) are defined below.

The operator matrix H and the "soumcet '

,V/_+i_-.,7

o •..
A •

i,
41'

i _ _oNL
•

Ii

,I

|

0 (3.2-13)

*The scalar Laplace transform variable p should not be confused

with the vector momentum _ .
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/ _'_,,_-ot\

U'

, /i_ r^,'t-o_

The formal solution for fNj/_)

(3.2-14)

ing way

may be written in the follow-

-(J÷...H÷..HI-I÷~_ULI....)_(p)
where the rlght-hand side of (3.2-15)

(3.2-15)

contains an infinite

number of terms.

The solution (3.2-15) relates the Laplace-transformed

function to its Initial value. However, the function OIp),

which involves N different velocity coordinates, contains

more information.than would be required for a particular

problem. Indeed, one could not specify an initial condition

in such detail. A more useful quantity is the single-particle

_/
distribution function 7_,/)) obtained from _ O}p) by an

integration over all velocities except/_ . We isolate from

(3.2-15) the first element in the matrlx /_(p) and

integrate over all velocities except _ , to obtain the
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following result.

z'Dg(O

• iZ o) (,÷,...,
"*" .., -. ' id.,C._CI,/IZ'_' ....-,, '

m

(3.2-16)

Terms of O _ have been disregarded in writing (3 •2-16 ).

be exact, the coefficients of the second, third and fourth

To

terms on the right-hand side of (3.2-16) should be
I

(,vvX, (,v-/)Ov-s)(N-3)
-_- _ Na j N_ (3.2-17)

respectively. The coefficients (3.2-17) all approach unity

in the limit of large N. Furthermore, we have dropped from

the third term of (3.2-16) N-I terms of _(b) and from the

fourth term (3N-5)(N-I) terms of _(_) . An increasing

number of terms must be discarded from each higher term in

the series solution for _ (ll.]O) . The omission of

these terms is Justified in two ways. First, our interest

lies in the determination of the bulk behavior of the plasma,

not in those properties which depend upon the total number

of particles present within the system. The equations of

the hierarchy were derived on the basis that the walls of

the container could be moved to infinity, and the limit of

very large N has been used throughout. The doefficients



- 28 -

of the terms which are dropped, being inversely proportional

to N, becomes vanishingly small in the limit of very large N.

Second, it can be shown that the correction terms (of 0(_) )

significantly influence the solution only after a time T

which is much longer than the time required by the system to

come to a macroscopic equilibrium. In order to estimate T

we note that each term of the series (3.2-15) can be divided

into two parts, one which contributes to the solution (3.2-16)

and one which represents corrections to the solution. While

the first part dominates the lower terms, the correction part

becomes increasingly important as one goes to higher terms

in the series solution. Far out in the series there is a

term which contains equal contributions from both parts.

The time at which this term in the senies becomes of _(i)

then provides an estimate of T. We show in Appendix B that

T is of the order of _-_ plasma periods, a time considered

to be much longer than the time required for the plasma to

come to an equilibrium. Thus, while the solution (3.2-16)

is to be considered an approximation to the exact solution

of (3.2-12) the error introduced in uslnz (3.2-16) is

neEliEible for all times of interest.

The function _O'_lt=o ), ' which appears (after

takinE a Fourier transform in the spatial variable X_ )

th,  cond orth, (3.2-16)

contains one velocity variable (_ in this case) which does

not have an associated spatial coordinate. Balescu 9 has
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O,/

shown that the function / (_I _= O) may be written as a

product of two functions; f(_}t=o) which depends upon the

velocity /_ and the position _ , and _(/_l) which

depends only upon the velocity /_, . To stmmmrize the

arsument (for more details see sections 2 and 3 of ref° 9)

we note that two particles become statistically independent

if they are separated sufficiently far from one another

(shielding effects within the plasma are assumed to limit

the interaction range to a distance on the order of the

Debye length). At large separation distances (_--0)

may therefore be written as a product of two distribution

functions.

=/ ( lt-o) (3.2-18)

However, since / (_j_=o) is independent of the

--%

position coordinate X_ and therefore of the distance

between the particles, the product form (3.2-18) must be

valid for all Interpartlcle distances. The result (3.2-18)

is easily generalized to include a larger number of particles.

The function /L)÷/'u({TJ)l_)" may be written as the product of

the functions /"l'O(tfO}lt ) and //'°(iJe) whenever it

is possible to separate the particle i sufficiently far

(more than one Debye length) from all the particles in the

set {D] . It is readily seen that the necessary separation

can be achieved only if 0 < < /q .
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The above arEuments ane used to write _ (2 It=o) as

p,od_ot o: _ r_lr:o) _d v-1 _tlon, _)

//Rq/ f_3
(3.2-19)

The function ¢{_Yr) ls the spatially-homogeneous part of

(21_-0) at the initial instant of time, and
41

_.i_l:-4-_it:_._e fo_ (3.2-19) fo_ the _u_otions
_'Ic21_=0 ) is introduced into the solutlon (3o2-16)

fO, _ (lip) to obtain

_#,,¢r,)
(3.2-20)

where we have defined the quantity

(3.2-2l)

Balescu 9 has found the same result by using diaEFam methods.

The infinite series of terms on the right-hand side of

(3.2-20) converges only in those reglons of the p-plane where

L(A_p) _ _ . However, using the relatlon

I

/-X

a

(3.2-22)
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we note that

represents the analytic continuation of (3.2-20) with

(3.2-23)

(3.2-24)

since it is valid for all values of L(_) (except, of

course, the (isolated) zeros of E[4_) ) and____agrees with

the solution (3.2-20) in the regions where L(_D)_I

The result (3.2-23) is precisely that obtained by Landau 18

from the linearizedVlasov equation.

If the theory of residues is used to determine the

inverse Laplace transfor_nof (3.2-23), then the time behavior

of 6_t ) iS related to the poles of the lhmction _OJp].

Two different types of physical behavior are included.

Balescu 9 has noted that the contribution of the pole

_= "_ _'/_I represents the individual particle behavior

of the plasma; the tendency for a local density excess to be

spread over larger regions of space by the free-streamlng

motion of the panicles. On the other hand, the poles of

(_[_))'' represent the collective behavior of the

plasma. While there may be, in general, an infinite number

of collective poles, most are heavily damped 26 and contribute
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I

has shown that in the limit of small _ (long wavelength)

the dominant pole (the one furthest to the right in the

p-plane) implies plasma oscillations close to the plasma

frequency which grow or decay at an exponential rate which

depends upon __(a)/_ • where 9.4 is the component of

.,a

velocity parallel to K and

(3.2-25)

amplitude of the disturbance grows if (¢)_(_/¢)M.}I_t..__)Z\ is
The

positive, decays if it is negative, (for tJK/K>O ).

The growth or decay rate of the above (Landap) pole is

independent of time. If the plasma is unstable then the

disturbance, as predicted by the solution (3.2-23), grows

indefinitely. However, we have noted earlier that the self-

adJoint properties of the operator matrlx V imply that the

_/

solution for _ (lit) is bounded in time. In order to

possibility of an infinite growth of _(l_t) we

consider the operator matrix V I , defined in the following

way

V
!

l

(3.2-26)
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The matrix (3.2-26) is obtained from V (eqUo (3.2-8)) by

dropplnz a term from eaah of the off-dlaEonal elements

V °operator , unlike V • is not self-adJoint.

(3.Z-ZT)

The deletion of the second velocity derivative from the

operator_)_/Q') has destroyed the self-adJolntness of the

operator matrix.

Despite the mathematical difference between the operators

V'V and , both predict (in the limit N-_ _ ) the same

behavior for the sinEle partlcle function after a reduction

in the level of description. We consider the matrlx equation

The initial value problem may be solved by taklnE a Laplace

transform In time, exactly as was done above° The solution

for the first element in the vector _ becomes, after

Inte_atinE,over all welocltles except/_/ , identical to the

solution (3.2-16) for _ (lip) • The only difference

between the two solutions is that some terms of O(_) which

were discarded in the writlng of (3.2-16) do not appear in

the solution (3°2-28). For instance, the term



z,l

has keen discarded from the third term of the solution

for _ (/l_) • The third term of the solution(3.2-16)

of equation (3.2-28) has no similar contribution. The

elements of the matrix V which were dropped to obtain Y I

can therefore be associated with

(a) properties of the plasma which depend upon N, the

total number of particles present within the system.

(b) events which occur on a time scale much longer than

the time required for the system to come to a

macroscopic equilibrium°

The self-adJoint properties of the operator V represent

information inaccessible to a theory which attempts to

describe the bulk behavior of a system°

Two physical interpretations of the behavior represented

by the dominant collective (Landau) pole of (3°2-23) are

possible. The first is based upon the motion of a particle

in the force field of a wave. Jackson 27 has discussed the

energy transferred to and from the wave by the "trapping"

of particles in a potential well of the disturbance°

However, Dawson 28 has noted that trapp_g, being a non-linear

process, cannot be the source of Landau damping which comes

from the solution of a linear equation. Dawson has inter-
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preted Landau damping in terms of the energy transferred

between the wave and the particles which have a velocity

near the wave velocity. Particles which travel slightly

faster than the wave are slowed down as they transfer

energy to the wave, and particles which travel slightly

slower than the wave are accelerated as the wave transfers

energy to the particles° The net transfer of energy to the

wave depends upon the relative number of particles travelling

slower and faster than the wave and therefore to the slope

of the distribution function at the wave velocity° An

alternative interpretation of the interaction between a

wave and particles discussed by Pearson _, is based upon

the a_sorption and emission of plasma waves by a particle.

A particle in the field of a plasma wave can, in this view,

either absorb or emit wave energy o A wave is damped if

the absorption of all particles exceeds the emission and

is amplified if the emission exceeds the absorption°

Finally, we note that Landau damping may not be visible at

all. Both Backus 30 and Dawson 28 have shown that non-linear

processes may effect the behavior of the disturbance before

Landa_ damping can be observed° If the trapping time _ is

less than the Landau damping time then the terms which were

discarded from the right-hand side of the equations of the

hierarchy (2-17) become important before the Landau part of

the homogeneous solution has an opportunity to dominate the

behavior.
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The essential elements of the physical picture of

Landau damping have been verified in r_fo 31 where the

spatial damping of electrostatic waves in an effectively

collislonless plasma was_ measured experimentally° The

damPinE rates were found to agree, to within experimental

error, with the results of LandaU. Furthermore, it was

found that if the plasma contained no particles with velocities

near that of the wave (the high velocity tall of the dlstrl-

butlon function was cut off) then the electrostatlc waves

propaEated undamped In the plasma o

3.3 The Generalized Operator C/it)

The homogeneous equation (3.2-3) for the generalized

sinEle-part/icle function Is used with an appropriate

undisturbed state to define the operator _(/]_) ° The

operator, which is a function of N velocities, the wave

vector _ and time, is not symmetric to the interchange of

/_ with any other velocity (the N-I other velocities may

be exchanged s3_metrlcally)° Although _('/1_'] may be

used to rewrite the solution for 2£ (/It) in a simple,

formal manner, its real importance becomes evident when we

consider other equations of the hierarchy. We find below

and in Chapter 5 that the operators _ (_) may
be used to

write the solution to each equation. The solution contains

two types of terms. First, there is a product of

operators and an initial value, function; second, there is a
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convolution integral in time of _ (Z_) operators with a

(time-dependent) source term. The latter term does not

enter the present discussion as it does not significantly

influence the short-tlme behavior of the distribution

functions (it is discussed in detail in Chapters 5-8).

(/l_) is defined by the differential
The operator

equation

(3.3-1)

with the initial condition

(/It,o) = i (3.3-2)

We have introduced the notation

where the parenthesis ( j _-_ _' ) indicates that the

velocities /_i and _ are to be interchanged. The operator

(/I_) may be used to write the solution for _ (11t)
in the following way

(3.3-4)
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An explicit expression for the operator Is found by

taking a Laplace transform of (3.3-4) and equating the

result with the solution for (/i_) found above in

Section 3.2 (equ. 3.2-15). The operator _(/J_)

Wrlt_en in terms of the Laplace transfo__m variable p_ has

the following form

,

+ , p ,'_'_, /'1o, iK_ p,;_x_ +"'

The single-partlcle distribution function _ (/It)

Is obtained from _ (t0_) by integrating over all velo-

cities except /_ . We write, from (3.3-4)

(3.3-5)

(3°3-6)

where the reduced ope_tor _ (/I_) depends only upon

the velocity /_j (as well as the wave number K and time).

When the expression (3_3-6) ls compared (after taking a

Laplace transform in time) with the solution (3.2-23) for

_ ('1,/0) we find

(3.3-T)
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22
in agreement with the result obtained by Dupree. The

operator -_(/l_) , obtained by taking an inverse Laplace

transform of (3-3-7) propagates the function /_ (/i_--0)

in time according to the linearized Vlasov equation.

The form to which the operator q (/I_ reduces

after an integration over N-1 velocities depends upon the

function on which it is operating (_N'_/,t=O) in the

case of (3-3-_))- We show in Chapter 6 that a hierarchy
of

"reduced" operators may be constructed from a sequence of

functions (J) which have the same overall properties

as /_t[I I_ =0) but differ as to how the appropriate

symmetry is obtained.

We have shown in Chapter 2 that the equation for

/_('_'_}1_) (where I_-_ ) may be written in the followln8

way

,/
(3°3-8)

If a small parameter 6- is used to order the distribution

£_ ((5 -0) ) and para-functions (as in Section 3.2, _ the

meter _ is of order 0-3 or smaller, then the entire

right-hand side of (3.3-8) is at most of order O-_*J •

Furthermore, the last term on the left-hand side of (3.3-8)

is of order 6-_.3. For small values of O- , terms of (_(o-_*_)

or higher may be dropped from (3- 3-8), and the _)-_ equation
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of the hierarchy reduced to the following homogeneous form

(3.3-9)

2J

The operator. "_,_,_..,_ for _ = 2 may be written

(see (2.13) , after taking a double Fourier transfoz_n in the

spatial variables X I and 3(_ ),

_d

N

,4/

X
(3.3-1o)

If we add tO (3.3-10) tWO terms of 0(_) then we may write

and the equation for _,._ (/;If) becomes

(3o3-11)

(3.3-12)



The operators _ (/) and [_) commute to

O (_) . 12 The only tez_s which do not commute are those

whleh have been added to (3.3-10) in order to wrlte (3.3-11),

We may now use the _ (_) operators to wrlte the solutlon

of (3.3-12) as

K_ K,
(3.3-13)

In general, (to within an e=or of 0(_0)) the _'-'_ equation

of the hierarchy may be w_Itten

(3.3-1_)

wlth the solution

(3.3-15)

If both sides of (3.3-15) are integrated over the velocltles

in the set {N-O 3 we find

• ;°,.,
(3.3-16)
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The case _ = 2 is discussed in detail in section 2 of

Appendix C. We note that if the initial conditions are such

that Ig..._ (_Vll t=O) may be written as a product

of single particle functions (the particles in the set

are statistically unoorrelated) then, for short times at

least, the _ -particle function remains factorized.

-% i=/ l
(B.B-17)

3.4 Discussion

The initial response of a plasma to a small disturbance

has been studied above. The assumptions that the amplitude

of the disturbance and the plasma parameter _ were small

quantities were used to decouple each equation of the hier-

archy from the others. Each equation was solved in terms of

the generalized propagator _ C_) and the initial value

of the correlation function, (_jf=O) o The result for

single-particle distribution function _ {l_'/Z) wasthe

found to agree with that obtained by Landau when the level

of description was reduced by an integration over the N-1

extra velocity coordinates. Furthermore, if the _-particle

function could be factored initially (which means physically

that initially the particles were statistically uncorrelated)

it was found to remain factorized, for short times at least.

The solution for _gj11_) became a product of 13 time-
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dependent, single-particle functions.

If a plasma is stable then the solutions_ the homo-

geneous equations (3.3-9) have a part which oscillates as

-[K'_ , and a part which decays exponentially with

time (Landau damping). In the limit of large times it is

the "source" terms on the right-hand side of each equation

that determine the long-time behavior of a stable plasma. We

show in Chapter 4 that if the plasma is spatially homogeneous

( _1(/It=O) = O ) and if the parameter _ is small, but

not zero, it is the first term on the right-hand side of

(2-15) for f_(/_I_) which determines the dominant behavior

at lone times. The inclusion of this term, which involves

_o(_j-- , links the third equation of the hierarchy to the

first. We show that the simultaneous solution of the first

and third equations leads, upon a reduction in the level of

description, to the Balescu-Lenard collision term.

On the other hand, if the plasma is unstable there is

at least one mode of oscillation of the homogeneous solution

(3.3-17) which grows exponentially with time and dominates

the solution of (3.3-9) in the limit of large times. If

g wsas e , thesolutionfor •

since it involves a product of two _ (%) operators,

_t _2,3 _3_t_ and so on It
grows as , / (I_31_) as , .

is a feature of the theory that the growth rate is

independent of time, and the solution of the homogeneous

part of each equation of the hierarchy grows indefinitely in
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t_me. If the amplitude of each function _ i_) is

not to become infinite it must be prevented from so doing

by the source terms on the right-hand side of each equation.

These terms, which could be discarded initially because

they were small, must be included in the limit of large

times. If a disturbance, which is initially of _(C7), grows

exponentially we find after time t

(_)_ ©(_ e_) (3._-i)

The time at which becomes of {_(_) is then

However, not only does _ (_) become of _(J) , but

_'_t),...alsobecomeor O(J) att_me t (3;4-2).The

terms on the right-hand side of the equation (3.3-8) are no

longer small compared with the ones on the left, and each

equation of the hierarchy becomes coupled with at least one

other equation. The complete hierarchy of equations must

be solved for an unstable plasma, a problem considered in

detail in Chapters 5 through 8.
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CHAPTER 4

KINETIC EQUATION FOR A STABLE, HOMOGENEOUS PLASMA

4.1 Introduction

A kinetic equation for a spatially-homogeneous, stable

plasma is derived from the hierarchy of equations for the

N-momentum functions ({_}I_) . The discussion is

limited to a plasma in which there is no magnetic field

present. Quantum and relatlvlstic effects are neglected.

To proceed, we derive from the hierarchy (2-17) a general

kinetic (master) equation of the form (4.1-1) for the dis-

tribution function _L'-_O(_) .

(4.1-i)

The "collision" operator on the right-hand side of (4.1-1)

contains only the N-momentum function _u{_j-- . Once the

general kinetic equation has been obtained the level of

description may be reduced by an integration over all but

one of the velocities. As discussed by McCune 12 the above

represents an alternative approach to that usually taken in

the derivation of a kinetic equation for the single particle



function.

The plasma parameter _ , assumed small, is used to

order the terms of the hierarchy (2-17). We show in

Section 4.2 that, with the adopted ordering procedure, the

hierarchy can be tr----_.catedat the equation for the two-

particle function p_(/_)-- . The problem is reduced

(to within an error of _ (_3 ) to the simultaneous

solution of two equations. McCune 12 has solved these

equations by the method of multiple time scales to obtain

a generalized kinetic equation of the form (4.1-1). The

methods of Appendix C are used in Section 4.3 to reduce the

general kinetic equation to the kinetic equation of Balescu

and Lenard. Finally, we discuss in Section 4.4 an alternative

derivation of (4.1-1) which stresses the statistical nature

of an assumption which must be made to obtain a kinetic

equation for a plasma.

4.2 Generalized Kinetic Equation

The slngle-partlcle function vanishes identically in a

spatially-homogeneous plasma. The terms of the equations are

ordered by means of the plasma parameter _ , assumed to be

a small quantity. The N-momenta function _-_0(f) is

assumed to be of O{J) . The equation (2-27) for /_(/_l_)

containstheted whichis •

The function /_a(/_lT_) is thus of 0(_') • The fourth

equation of the hierarchy (for /_3(_3_1_ ) contain, the

/
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te_ 6 _ L V <_Jlt_ (_=e_er T c/it)=-© ),
and we conclude that _/_3({_I_) is of --0(6 _) .

I

functions, (lf"L).}lt) for D > /4, are of

smaller. If temms whlch are of second or_er In

so

or smaller

are discarded from the hierarchy, the foz_Llation is reduced

to two coupled equations.

(..2-2)

We have assumed throughout that the initial conditions on

the problem are consistent with the above ordering procedume.

The two-particle function for a spatially-homogeneous

plasma depends only upon the distance between the points

1 and 2.

(..2-3)

where the function _'q'_'(/2l_) is now considered to be

of _(t) . It is convenient to rewrlte the right-hand side

of (_.2-1) in terms of a Fourier transform in the variable
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.... - X__/_ = A/ . The convolution theorem for Fourier

transforms is used to write

(4,2-4)

where we have defined the Fourier transform of

and introduced the new operator

(_.e-5)

(4.2-6)

The notation \_,.._,,__) is used to denotethat, when

the operator L(_) acts on a function of K_' and _j" ,

K; is to be replaced by _ .:and is to be replaced

by -_ o The equation_ (_°2-i) and (4°2-2) become
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(_.2-8)

where

(4.2-9)

We note that the rlght-hand side of (4.2-7) is of _(g)

compared to the left which suggests that there are two time

scales on which events can be expected to occur. NoCune 12

has solved equations (4.2-7) and (4.2-8) by the method of

multiple time scales. 32" 33, 34, 35 If the function

is expanded in powers of

.__0
F '°(rl = (t) E,F'°(t) (a.2-lO)

and the multiple time scales _ and _ _ introduced,

then equations (4.2-7) and (4.2-8) may be solved to obtain a

general kinetic equation (equation (51) of ref. (12)) for

_o
the evolution of T (_) on the slow (_7 _ ) time scale. The

condition that the initial correlations _N_a(/QI_=O ) dis-
v

appear from the plasma in the limit of large times by the

process of phase mixing is used in the derivation. We do not

repeat the calculations but merely quote the result (rewritten in
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the present notation)

(4.2-11)

Equation (4.2-11) predicts the rate of change of the function

V_°(_)-- on theslow time scale. Me show in the next

section that the linear equation (4.2-11), when lnte@_ated

over (N-l) velocities, reduces to the non-llnesm kinetic

equation of Balescu and Lensmd.

4.3 Reduction of the Level of ]_escription

Equation (4.2_Ii) becomes, after an integration over

the N-1 velocities /lra ..... /_N

wheme we have defined the sinEle particle function

(4.3-2)

N-I

and (a._) denotes the velocity element _ __ • ap o o •

We noted in Chapter 3 that the spatially-homoEeneous function

7 _'° (_) could be written as a product of _) functions

f(_) fop values of L) much less than N. This olserwation

is used with the result of Section 2, Appendix C, to write
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(_ A/-I ° _.

The propagator

(4.3-3)

ls the same as that

obtained from a solution to the ltnearlzed Vlasov equation

except that here the Laplace transform of _ (/1"_ '1) (In
/

the variable _P ) depends upon the slow tlme scale ( _c_/_ )

throu_ the presence of the function /_//_) In the operator,

where

P"

Equatlon (_.3-1) becomes with the result (_.3-3)

o

The convolution theorem for Laplace transforms is used to

rewrite (_-3-5) as
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where the contour C passes to the riF_ht of the poles of

_,Ip) .n__o_. _._to__. _o_.o__ _j-_.
The def_ultlons (4.3-JI.) of the operator -_ (lllfO)

the flmctlon "_ (/_ f)) axe used to m_lte

and

and

_f(_,)_ (4.B-7)

=j i (_.3-8)

The rIEht-hand side of (4.3-6) may be written in the following

convenient way (we leave out for the moment the operator /(/_))

__ _, _ _ Y(_.

_ -p-_._ --
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The contour C passes to the r_ght of the pole _=-zK./_/ :

in the i_lrst term of (4.3-9). If the contour is _oved from

the right to the left of this pole, the first term may be

rewritten as a contour integral plus _YI times the residue

at the pole. We find

/ -p-#,_._
4"ff

_ '..Z_( d ' -i2ffe). @.,v.;,jc 51o, _ ,_.._

(_.3-1o)

wheme

__ _/_-"
(4-,_#J'""-" :-/ r__ .- __ ._..:-_<<>._£

The small positive parameter<Y has been introduced to specify

the way in which the path of integration is to go around the

The new variable _/ =-p has been used to write thepole.

integral of (_.3-10). The contou_ C' passes to the left of

the poles of (_(_-.p#))-# and to the _lEht of the r_st

of the poles of the lnteEx_ud. We note that the inteE_u_d in
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the second term of (4.3-10) is the complex conjugate of the

lnteg_and in the second term of (4.3-9). The difference

between these two intends, divided by _ri, is then a

purely _iq_tity. We note from equation (4.3-6) that

since _/_,)_(£_)is real and the operator /(/_) Is purely

ImaglnaA-y, we require onEy the imaginary part of (4.3-9).

The second terms of (4.3-9) and (4.3-10) do not contribute

to thls imaginary part.

The third term of (4.3-9) has no poles to the right of

the contour C and vanishes when the contour is closed to the

right. The last term has a single pole 70 =- iK'.._/ to the

left of the contour, and the integral may be evaluated by

closing the contour to the left. We find the followine

result

)÷6"

The numerator and denominator of the second term of (_.3-Ii)

azqe multiplied by E(_-_'_) to obtain
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(4.3-12)

where the second term of (4.3-12) is a pmrely real quantity.

The above integrals may be simplified by an integration

over the components of velocity perpendicular to the wave

vector /_ . If the component of/b_ , parallel to., is

denoted by _l • then we.find

(_.3-13)

where we have defined the new function of velocity

(a.3-1_)

The PlemelJ formula 26

"g'_ _d "7-1_ ) = _--_ d a 7-1.)
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( _J denotes the Cauchy principa_ value of the integral)

is used with the relations (4.3-12) and (4.3-13) to rewrite

(4.3-11) as

(4.3-16)

where

The relation (4.3-16) is substituted into equation (4.3-6)

for d E_.) to obtain the final result

in agreement with the kinetic equation of Balescu 19 and

20
Lena_d. We note that this is a non-linear equation for the

evolution in t_ee of the slngle-pa_ticle flmction. Whereas

the behavior at the N-momentum level of description is linear

((_.2-11) is a linear equation for T_O(_) ), the

behavior becomes non-linear when the level oS description is

reduced.
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4.4 Discussion

The snail parameter _ has been used to order the

generalized correlation functions and to determine the long

time behavior of a stable plasm. The hierarchy of equations

_-_jj truncated at the equation for the two-particle

i_nctions was then solved in Section 4.2 by the method of

multiple time scales to obtain a linear equation for the

time rate of change of the function _-_OC_) of the N

momentum of the system. McCune 12 has pointed out that any

function of the total energy of the system is a stationary

solution of (4.2-11). Further, he has noted that a large

class of these f_nctions of the total energy (subject to the

condition that they be normalizable) reduce upon inte_atlon

over N-I velocities to a Maxwellian distribution in the limit

of large N. We have shown in Section 4.3 that the general

kinetic equation (4.2-Ii) upon integration over N-I velocities

reduces (in the limit N -_ _ ) to the Balescu-Lenard

equation. The only stationary solution to this reduced

equation is the _ellian distribution 19, in agreement with

the findings of NcCune.

Both the Balescu-Lenard equation and the master equa-

tion thus predict the irreversible approach of the single-

particle function towards a Maxwellian distribution. It

should be noted that the set of coupled equations (4.2-7)

and (4.2-8) from which this solution was obtained are time

reversible. The reversibility was lost when we introduced
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the assumption that the weakness of the correlations in the

/_ ,Yi&!
....... ' " ' ) led to two wldely separatedplasma ( / !,'_< _:_) " _ << i

tlme scales on.which events could occum. 12"36 Events which

occur on the fast time scale happen so quickly that their

asymptotic behavior may be used as "initial" conditions for

events which occur on the slow time scale, and the latter

appear to the observer to evolve irreversibly in time.

Another derivation of the results of Section 4.2 is

possible which brines this approach mare into line with

the ideas of PriEoEine, Resibois and Balescu. 37"9 The

derivation begins with an exact solution of the equations

(4.2-7) and (4.2-8). The solution of equation (4.2-8) for

_F_(l_i_) may be mitten in terms of the operator

(f) in the followlnE way.

h .L_ * ', < _
_'-." tt_ :

t ,.,-;,,, ',,j :./. </ : _j '" ( .. :i .; , _ .-, {/,._,, :::, _
• .... b< _ •

_- W,C_J7_ I't_)7- "<J)% "7-'u_i--'._

The equation (4.2-7) for b (7,j

(4.4-l)

now becomes with the

substitution of (4.4-1)

p

+>j _ _L( :; ,., ...
/<i; C

(4.4-;>)



The equation (4.4-2) for the time rate of change of the N-

:_entwa _nction has two character_ which ar_ typical

of a genial klnetta equation _.oh is valid for all times

(e_paA_ wlth equation ( _._-11 ) of ref. (37)). First,

there is a te.-_ whlah represents the effect at time t of the

initial eorTelattons In the plasma. This ter_ is important

during the initial stages of the evolution of the plasma.

Second, there Is a term which is non-Markovlan. We see

(4.4-2) that the rate of change of TN'°C$) at any time t

depends upon the values of _-_o($) at all earlier

timem. The non-Narkovlan behavior arises f_ the oonvolu-

tlon that Is a oensequenee of the finite tlme of collision

between paA_tieles and the finite correlation length in the

plasma. In oMer to bring equation (4.4-2) Into agz_eement

wlth equation (4.2-11) of Section 4.2 we need to change

(4.4-2) to a NarkoWA&n fox,=. This Is aooowpltshed by Intro-

ducing the assumption that the collision time (memory) is

sufflolentl 7 short that the change of _-_o(_) during this

perled may be ne_leeted (eompa_e with the discussion of

Grad38). With this assmaptlon _o_ is replaced

by _,o(_) In the more general integral of (4.4-2)

and the kinetic equation beeomes Markovlan. In the limit of

large times the lnltlal conditions die out and we may rewrite

(4.4-2) as
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in a_eement wlth the general kinetic equation of Section 4.2.

We have discussed in Section 4.3 the reduction of equa-

tion (4.2-ii) to the Balescu-Lena_ equation for the single

particle function. The reductlon was accomplished by

rewFitlnE the Inte_al on the rlEht-hand side of (4.2-11) as

a convolution integral in the Laplace variable _ and

maklnE use of the arEument that the function _O(_) _n

this integral could be written as a product of I_ single

panicle functions f(_) . However, note that the

InteEPal on the right-hand side of (4.4-2), when rewritten

as a convolution integral, contaL_s the function _o(_) .

cannot be written as a product of 1) sinEle particle

functions f(_) . However, it is still possible to reduce

the level of description of the collision term to obtain an

equation for the single particle function. The result is

expressed in terms of a convolution lntegrat in time. Thws,

the exact solution of the equations (4.2-7) and (4.2-8) does

not require that the N momenta be specified as the evolution

of the system can still be described in, terms of the single-

particle function. However, a very detailed description is

recFuired as the behavior of the system at any given time is

dependent upon its entire past history. To further simpllf_.r

the description an adiabatic assumption must be introduced

to reduce the equation to its familiar Narkovlan form.

of the Laplace varlable_



- 61 -

CHAn m 5

FORNAL SOLUTION OF THE HIERARCHY FOR AN UNSTABLE

PLASNA IN THE LIRIT _ _O

5 • 1 Intr_duction

. We consider in the remaining Chapters the problem of

a weak instability in a low-density, high-temperatu_e plasma.

In such a plasma collisions between particles occur so

infrequently that their effect upon the behavior of the gas

may often be neglected. For example, the plasma in inter-

planetary space has a mean free path on the order of 1

astronomical unit and a Debye length (the scale on which

collec_ive effects are important) on the order of 10 meterl.

If such a plasma is unstable the mechanism which l_ts the

instability and brings about its final decay cannot depend

upon dlPect collisions between panicles. We propose to use

the hierarchy of equations (2-17) for the distribution

_unctlons --'f_({_)/_) in N-momentum space to study collec-

tiYe interactions in an unstable plasma.

There are two advantages to be gained from a considera-

tion of the problem fl_om the point of view of the equations

(2-17). First, the equations are llnear. Even the effects
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of mode coupling are formulated in a linear way, aAfe_at_anee

which is in sharp contrast to the non-linear character of

s coo ,the

which appear in the equations are independent of time, and

the problem of an unstable collisionless plasma may be

solved without the introduction of an adiabatic hypothesis

or multiple time scales. The disadvantage is that the entire

hierarchy of equations must be retained in the analysis. It

is not possible to truncate the hierarchy at the 13 th member

and to consider only the I) lowest equations.

Collective interactions in a plasma have been the

object of much research in recent years. Analytic investi-

gations of self-llmltlnE of llnearly-unstable plasmas have

been confined to the so-called "bump-ln-tail" instability

in the weakly-unstable limit. 21 In such an _nstable plasma

the interactions between particles and waves dominate over

wave-wave interactions, and the latter may be neglected in

the lowest order approximation. The simplified equations of

"quasi-llnear" theory represent a first correction to the

llnearlzed theory and describe the self-limlting of the

Instabillty. 23'24 The non-linear mode-coupling terms,

which remain small, are treated as a perturbation to the

quasi-linear solution and lead to a redistribution of the

energy throughout the wave spectrum 39'40'41 The results of

quasi-llnear theory are reviewed briefly below. The

remainder of this Chapter is devoted to a discussion of the
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basic assumptions, the simplifications of the hierarchy

(2-17) that result from these assumptions and the formal

solution of the simplified equations.

We consider in Chapter 6 the problem of reducing the

level of description of the solution for _- (/!tJ from

N velocities to that of a single velocity. A hierarchy of

operators is uncovered in the course of the reduction. The

"reduced" operators are found to be simply related to one

another. The form of the solution in the limit of large

times is determined in Chapter 7. Further simplifications

of the solution are found in Chapter 8 by taking the limit

that the initial growth rate of the disturbance is very small.

The equation for the spatially-homogeneous function _-J_°C[)--

is found, after these simplifications, to be a diffusion-

type of equation in agreement with the results of quasi-

linear theory. A method is proposed in Chapter 9 for

obtaining a simple expression to approximate the growth with

time of the energy in the initially most unstable mode in

the plasma. The approximate solution is found to aEree

qualitatively with results obtained by Drummond and Pinls 23

from a numerical calculation.

5.2 Review of Quasi-Linear Theory

The quasi-linear theory of unstable plasmas is based

upon two assumptions. The first is that the number den_Lty

is so low and the plasma temperature so high that collis_ons

between particles may be neglected. The second is that the
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energy in the disturbance is much less than the mean kinetic

energy of the particles.

In the limit that the plasma is "collisionless" it is

possible to find a "solution" to the B_KY hierarchy of

equations. _ This special "solution", the non-linear Vlasov

equation, is itself an equation for the evolution in time of

the slngle-particle distribution function (L) = I). It is

sometimes referred to as a correlatlonless kinetic equation

because tO obtain it correlations between the velocities of

different particles must be neglected for all times.

Only one exact solution to the Vlasov equation has been

found, that of a steady-state, one-dimensional electrostatic

wave in a plasma of ions and electrons° _2 No time-dependent

problem has yet been solved exactly. To attack the problem

of an unstable disturbance it is customary to separate _he

single-particle distribution function into a spatially-

homoEeneo_ part _It)and a spatially inhomogeneous part

_(/_I_) . equations for these functions are 23The

_

where we have written the disturbance as a sum of discrete

(5.2-1)
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modes. We have further assumed that there is no applied

electric field.

There has been as yet no simplification as equation

(5.2-1) for _ is still non-linear. To simplify the

analysis it is necessary to introduce the second of the

above two assumptions and to consider a plasma in which the

mean kinetic energy of the particles is much greater than the

energy of the disturbance. A parameter O-- is used to charac-

terize the order Of magnitmde of the disturbance (_ "_ O(0-)) .

If O- is small then the non-linear term on the right-hand

side of (5.2-1) is small compared_W_ the terms on the left.

We may then neg/ect (for times which are not too long) the

non-llnear terms in (5.2-1) and reduce the formulation to

the pair of coupled linear equations (5.2-2) and (5.2-3).

(5.2-3)

However, even the linear "zero order" equations have not

solved exactly because equation (5.2-3) forbeen

operator {K_J(K)'_ Jc{_ which is depen-
contains the

dent upon time. The approximate methods which are employed

to solve (5.2-3) require either the introduction of an adia-

batic hypothesis 21"23"39 or the use of multiple time scales.43"41

The basic assumption is that for a weak disturbance

SO that one may solve equation (5-2-3) for _ holding q
/K
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constant. Equation (5.2-3), solved to _'(G -'2) in the limit

of large times (so that the free-streaming C i_._ terms

damp out), is combined wlth (5.2-2) to obtain a diffusion

equation for _ . The diffusion of _ in velocity space

eventually limits the disturbance to some maximum amplitude.

However, in orderl_r the adopted ordering procedure to

be valid for all times, the disturbance must be limited to a

small equilibrium amplitude. The requirement that

remain small is used to show that the growth rate _ of the

disturbance must be very small ( _-0(_ _) )0 If _ _-O(_)

for all tines then the non-linear terms of (5.2-1) remain

small and may be treated by perturbation methods. The non-

linear terms have been found to lead to a redistribution of

the energy throushout the wave spectrum and a gradual damping

of the disturbance.

The present approach has the advantage over "quasi-

linear" theory that the equations for a collisionless plasma

can be solved directly without introducing an adiabatic

hypothesis or multiple time ssales. Further, the equations

are linear so that no perturbation methods are required to

deal with the mode-coupling terms. We find in Chapters 6

through 8 that the problems of this theory are not involved

with the solution of the basic equations but with the reduction

of the solution to some simple form. We show that if the

initial amplitude of the disturbance is small then:many terms

may be approximated by their asymptotic forms with a resulting
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s4-._ 4 e_..+4_, of the solution Fum_her, we find that the

order in which events occur depends upon the growth rate _.

If _ is less than unity then the "mode coupllngt' terms

in the solution do not become important until some long time

characterized by t "_- T whereas the "quasi-linear" terms

become significant at a shorter time _/" < T. We show that

if _ is sufficiently small then the quasi-llnear readjust-

ment of the plasma takes place completely before the mode-

coupllng tez_s enter the solution. In this case the amplitude

of the disturbance remains small for all times. The results

are consistent with those of "quasi-linear" theory.

5.3 Basic Assumptions

We assume that colllslonal effects may be neglected and

take the limit that the parameter _-_ O • Terms like

_,_0 in the hierarchy equation (2-17) become

vanishingly small in this limit. However, the order of magni-

tude of terms like C 2_ J--__L,_, f t_'_ is (by the

arguments of Chapter _)

(N-o)c o o) = o(f"")

and must be retained. The hierarchy becomes for a collision-

less plasma
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In order to interpret the terms on the rlght-hand side

of (5.3-1) we take a Fourier transform in the spatial varlable

X_ of the equation for ?_' /it). We find

(_ +':K',m')_ ('It)-i-_ _";v_/< __O_

(5.3-2)

_N-O
-.I,3

The-second term on the right-h_d side of (5.3-2) (with the

(_)) removes the spatially-homogeneous part of the

first term from the equation. Since we consider equation

(5.3-2) only for non-zero values of K t_--o (l_t)=O by the

condition fd_ "F"vd(ilt)=-F'_°(_.)) the second term does not

enter the discussion. The first term on the right-hand side

of (5.3-2) has an analogous form to the non-linear term on

the rlght-hand side of the Vlasov equation (5.2-1). Similarly,

the last term on the rlght-hand side of (5_3-2) has an anal-

ogous form to the term on the rlght-hand side of equation

(5.2-2) for _(_It). We expect that the first term leads

to a redistribution of the wave energy and the last term to

a diffusion of the distribution function in the (N-l)

dimensional velocity space _ , _ ,..., /_ . This is



- 69

found to be the case°

We assume that the plasma is unstable to disturbances

whose wave numbers K lie within a certain range A K . The

discussion is limited to the "bump-in-tail" instability.

Each disturbance is assumed to have a unique initial growth

rate and an initial amplitude characterized by a

parameter 0-" . We have argued in Chapter 3 that if O- is

small the terms on the left-hand side of the _ th equation

(5.3-1) of the hierarchy are initially an order of magnitude

larger than those on the right so that for short times we

need solve only the homogeneous equation for each function

--"_p_l/;_l)_it) • However, we find that fN'_tFl>_it)-- grows as

e°i_t where _ is a constant and that after a time t the

terms of (5.3-1) have the orders of magnitude

,-,,0 (o--e

(5.3-3)

When _- _ <_- the terms on the right-hand side of (5.3-1)

are of the same order of magnitude as those on the left and

cannot be discarded from each equation. The time _ -_o-

characterizes the time at which each equation becomes coupled

to other equations of the hierarchy°

The smaller the initial amplitude of the disturbance and

the smaller its growth rate the longer is the time before the
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terms which contain
!

significantly the solution.

and begin to influence

Since these terms represent the

processes of diffusion in velocity space and redistribution

of wave energy we expect them to influence the behavior of

our system slowly if 6- and _ are small.

For long times, therefore, it is not possible to trun-

cate the hierarchy at the _ th equation by discarding the

terms whlch involve f_*/ f_ Tp_Oand because ,

which would then grow at the rate e D_t indefinitely, can

be expected to lead to anomolies in the solution• The problem

of an unstable plasma involves the solution of the complete

hierarchy of equations (5.3-1) The solution for the single-

particle distribution function involves an infinite number

of terms, reminiscent of the solution (3.2-29) for the short-

time behavior of _ (II_)

For the moment we neglect in each equation the terms

_If _÷/) which lead to a spreading of the wave energy.

We emphasize that this step is not necessary to obtain a

solution of (5.3-1) since the terms which are discarded are

linear. Indeed, the contribution of the terms _(fM_]is

discussed in Section 7.4. However, their inclusion increases

the complexity of the solution, and it is desirable to antici-

pate the quasi-linear result that in a weakly-unstable

plasma the diffusion in velocity space takes place quickly

compared with the redistribution of wave energy. Thus our

attention is confined to some "intermediate" times. We

calculate in Chapter 7 the contributions of the terms that are



discarded and determine under what conditions they are small

and may be neglected.

The I.) th equation of our hierarchy now becomes

Dt
(5.3-_)

3

' EEJ '- ,'jcrriv <=;,7 _ ;;- '--_, _ ((_}_ I-z)
• • V

Both sides of (5.3-4) may be integrated over the velocities in

the set (N-D} . We may demonstrate the equivalence of the

resulting equations with the quasi-linear theory. If, for

example, the distribution functions are factored as

_'°(*}lt) : F<,)F(._' " /} _)

iJ._,._- _ _ j ....... _'; _- ,,_ ,,
t _,c"-;i c/ 1 t'".'/52 _:J _/

(5.3-5)

where

/c,) :/'_ _,,,-7-,,-t)

and substituted into (5.3-4) the equation reduces to a sum of

equations of the form

__.__O__). ,_,,Dr(,) _
Dt Dx. ,v-0 <_P<>___oJ D/x,.,.fD.): °%u@ (5.3-6)

.. Similarly, the lowest equation of the hierarchy, when integrated
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over all velocities except /_ , becomes

(5.3-?)

The two equations (5.3-6) and (5.3-7)are identical in the

limit _D
T-> -% to the "zero order" equations for quasi-

linear theory. Thus the hierarchy (5.3-4) of equations is

equivalent to the equations of quasi-linear theory (without

the non-linear terms).

However, we do not choose to reduce the level of descrip-

tion at this point to that of a single-particle distribution

function. As was pointed out in Section 5.2 the equations of

the quasi-linear theory are linear, but the time-dependent

operator in the linearized equation (5.3-6) for ? (l) requires

that some adiabatic hypothesis or multiple time scales be

introduced. The only solutions that have been obtained to

the equations (5.3-6) and (5.3-7) have been approximate ones.

However, we can, by considering the hierarchy (5.3-4) obtain

an exact solution to these equations.

5.4 Formal Solution

We present below the formal solution of the equations

(5.3-4). Note:that in order to solve for the function i (_}_)

we need to know a function which comes after it in the

hierarchy. We take a I) -dimensional Fourier transform in

the variables X,, Xa, ', Wo , and write (we add I_ terms

of 0(_) as we did in Chapter 3 to write (3.3-I_))
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L(_') operates on a _mction of

(5.a-e)

As was nmntioned in Chapter 3 the opera_ors _ and _

co_#ute to 0(_) so that we may write the foz_al solution of

(5.4-1) in terms of the operators _ (t) •

_#

The first term in the solution for /(/]'_) contains the

initial value of f_'t/l_":O) arid the second theet_eeddpe_dent

fhmction /No3(_). The latter function may be eliminated from

the solution for / _'/(t) by substituting into (5._-3) the

solution for /,V,3(_.) . However, the solution for /_,3(_.)

has tWO terms, one containing /N'_t--O) and the other f'g'It,) ,

and it is necessary to Durther substitute for the function

/_'_(_) and so on. Each substitution for a function
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The solution for _ (lit) has an infinite number of terms.

"" ' jr--r')

where we have _itten _3_(,[//,)-L_r/l_-m_CQd'_,etc.. For
., r_._ _, _, _

very small the convolution integrals approach zero (from (3.3-2),

_, (/I-t-= 0)= J) and the solution becomes

We have shown in Chapter 3 that, when both sides of (5.4-5)

are integrated over all velocities except/bT/ , the solution

reduces to that obtained by Landau. Thus, the leading term

in (5.4-4) is a generalization of the Landau result. The

rest of the terms, which become important at large times

contribute to the quasi-linear behavior. Note further that

the solution (5.4-_) contains only the initial values of the

generalized correlation functions. Thus, in principle, one

can determine from (5.4-4) the evolution in time of the

generalized single-particle function from a knowledge of the

initial values of the generalized I_ -particle. However,

the solution for _ _'t/It) represents too much informatinn

as it contains all N veloclties. Having the general solution

it is useful to reduce cur description to the quantity
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_J ! _) obtain-_ from /_ (; / _ by an _utegration over all

velocities except .,Z,_ . The reduction of the level of

description of the solution (5._-_) is the subject of the

next chapter.



CHAPTER 6

REDUCTION OF THE _ OF n_R_CRIPTION. OF THE SOLUTION

6.1 Introduction

The solution for the generalized single-particle function

as written in the form (5.4-_) at the end of Chapter 5 is

unwieldy because of the large number of velocity coordinates

which are present. Indeed, as discussed in Chapter 3 the

specification of the initial values of the functions

present on the right-hand side of equation (5.4-4) is out of

the question. However, we can integrate both sides of (5.4-4)

over all velocities except _ , to obtain an expression for

the single-partlcle function _ (/I _) • The reduction of

the level of description of (5._-_) is the main concern of

this Chapter.

6.2 Operators

We discussed in Chapter 3 integration, of the quantity

{x/t (lit=o) over all velocities except _ . The result

is "-P_C,l_)2_Ole=o) where _(/]t) propagates the function

_'("_r:O) in time in agreement (to 0(_-) ) with the solution

of the linearized Vlasov equation obtained by Landau. The

upon
-K K" "
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an integration over N-I velocity coordinates depends crucially

upon the properties of the function (/It=O) . This

function, when integrated over the velocities in the set {N-S_,

becomes

r N_.Sp_/ /_%1

where the function /lj d__ t=/ iS a function of velocity

which is symmetric to the interchange of any two velocities

in the set {S-/_ . However, the operator _(/I_) may not

necessarily be followed by a function of this particular form.

_N,I .

For instance, in the second term of the solution for D' ('l't)

we tXnd the quantity

:% ":, _. ,_. __._.

It is important to remember that the operator /-:/_/') com-

tains derivatives with respect to _ and /_ . Wlth the

condition that the functions ::i _ vanish as _-_ oQ

we find by integration by parts

(6.z-z)

:dn_n: _ D_'J

The expression (6.2-2) may be integrated over the velocities

in the set (N-s} toobtain
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{N-J

_<j _ _ _' ,;

{s-8

ZZ f N-5 ,,rm ,.m /m r, _3--- LO)j(dg)_olr)_@')_ (jJr)Z++p,,/r:o

Is-G. ,v-s __,s

i , _ '5,_ _'_.,

The first term on the riEht-hand side of (6.2-_) contains S _

terms of O(_) , the second 5(N-S) terms of' C(_) • If'

(6.2-4)

S < < N the second terus dominate the first and we find

i d

: L,,.,.,>.<,,.
2 "_ "_*' _,4"_._ (6.2-5)

+o(¼)
The rillllt-lmnd side of (6.2-5) contains (S -1) dlf'f'erent

te_ns. If each ter_ ts examined individually we f'ind that it

is not symmetric to the interchange of the velocity/_i with

any other velocity in the set {5-_ . Nevertheless, the riEht-

hand side of' (6.2-5), taken as a whole, is symmetric to the

interchanEe of any two velocities in the set {5-_ _ by virtue

of the sum. Finally, we note from (6.2-3) that the _ th

term vanishes upon an lntesration over hhe velocity _ .

Thus if' we w_ite

(6.2-6)
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the function "I/_SJ(iii) has the properties that (a) it Is

not symmetric to the interchange of the velocity /I5. wlth

any other velocity in the set {S-O and (b) the integral of

i (/Ji) over the velocity /L_; vanishes.

We show that the operator _(/IC) , when followed by

a function _i (i) which has the property

_s _, _,, .ts, j _s-o(_) = ¢_ c_): _ s,I, /__,/t, (_i) (6.2-7)
t

does not reduce to the Landau operator

lntegratlon over the velocities In the set £5-I_ •

expression (3-3-5) for _(,#p)ls used to write

// d (')=
I

(III_) upon an

The

where the Integration is over all velocities except

/_ . The first term _mn_shes by_th_;cond£t_dn

.,,.,_, (,] = o (6.2-9)

whlch follows from (6.2-7)sm_ property (b) of

second term does not vanish; we flnd

The
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jr<,d_l_-';_=_<__:_:;_: __ ¢,_k,_"_<,,,_

where the condltlon that the function 0) vanlshestati:_he

boundarles of veloclty space has been used. The thlPd temm

when integz-aCed over all velocities except /_j reduces to
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(6.2-13)

• ,_/,I.

J< ,
We w111 show (see also Section 3 of Appendix C) that it is

/
possible to write _?_ _'I/) as the product of the functions

D;' _/) and f(i) - S:liillarly, we can _actor #7, (2_') as

'/,/ /_,/ (6.2-IIi)

The results (6.2-1;4) are substitu_ed above to obtain

/

where we have once again used

f,_ i.D,_<,jr.p_,,j
(6.e-16)
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The two series on the right-hand side of (6.2-14) can be

s,_d and the res,_t _ltten In terms of gC_p_=i-kc4p)
as

j,,._,_, / vp. I,v/-'J ) _ _,,, ,/.Jilt I (/li)

where we have introduced the new operator

,.,.no,;.t=t Se
tl_ee operators.

may be written as the product of

(6.2-19)

The time behavior of the operator 5_ (/j _'/t) is closely

allied with that of _ (/J_ . The primary difference is

that in _ (_;'jTO) the poles (_(_jjg)) "1 are double poles.

If the growth rate fob an unstable mode is _ , then in

the limit as _ _ _o the first term of the operator

_-#,;]f) grows as e _'g'_" and the second term as _eg;Z_ •

The operator _(/,_'/_) was derived on the basis that

/ 8,/
it was possible to write _7'I(I]_) as the product of _/ (lit)

and 5 - / functions _ _/') • We show that this fac_orlza-

tlon follows from the factorlzation of the inltlal conditions.
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(6.2-20)

We discuss in Appendix C the product of a single operator

lit) a._d a _motion 7_ (/) integrated over all but $

velocities. The extension to the case of three operators is

straightforward. The methods of Section 2.4 of Appendix O are

used to write

=o) =

(6.2-2l)
/_S÷43

--_ (,Jt)_(iJt)_(s.,j_);_. (,_.,it=o). '_ _,_._.,

_S÷1,3

If the function, /F[ (l_'S*II_ =o) is written as the

la,3__,4,,
product of /_K,-"i_s÷, (l[S÷llt-O) and 5-,_. functions of

velocity _) and the result (6.2-21) substituted into

(6.z-2o) .e find

/_,s,_(/j _) =
(6.2-22)

:
13//

thus Justifying the statements made earlier that /2, (//_')and

t (11[) could be written in the form (6.2-i_).

In addition to the function ) which comes from the

second term in the solution for /_-_ (/_ _) we find in the third
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term a function of the form

_=-o the _anvtion [,i" "'_,_ j has two unsymmetric indices in

the set _5-1j • This function is not, in general, syMnetric

to an interchange of the velocities /_t' and _ . The
j_,J

appropriate symmetry f_v _a (J]_) is obtained through the
.

double summation in the indices / and_ over the set_5-1_.

The function /_j (/_j) has the property that

The operator _(_ ('/-/0) when followed by a function of the
,_._/

form of _ (J) reduces to yet another operator after an inte-

gration over all velocities except /_j . To demonstrate this

result we note that

S _H I
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by the property (6.2-24). Thus, the first two terms in the

m<om)""_ (/) vanish. The third term

does not vanish. We find

.4/ .4/ . ,

p, <>',.<.,_; <.,/ , /...,
(6.2-26)

The fourth term is

+ )

"_'I . f7:7 

It is In, all cases possible to write the function _ (/]i,d I

as the product of "_;'I(11_-/) and the function _(._) • We

continue to higher terms in the expansion of _(/l_) to
u% /

(6.2-27)

obtain the following result
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Note that we can write

where we have defined the new operator

[p++_._,,) E<_p) /

_c_pi Ec_p_

(6.2-_)

(6.2-30)

We can continue and consider the functi@n

has the property

which

_(dn_) '/_ ,/s,1 {s-O s,+"-=_<,J: 4 <'>:Z22 4 <'_';+:+_
i 4:d-_

indices _" , d

indices with any other index in the set

(6o2-31)

is not symmetric to an interchange of the

or _ or to an interchange of any of these

{S-IJ . The appro-

priate symmetry is obtained only after the triple summation

over [ , d and _ o The above methods may be used to write

<,_=_ <,,+++# <,, . I
t ,4 c,.++,,) I

(6.2-32)

where

(6.2-33)
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The factor 2 in equation (6.2-32) comes from the property that

the operator _x (/,iIj_21p) is symmetric in the indices / and

so that

(6.2-34)

even though /_3 (il/_# I_) is not symmetric to an interchange of

these indices. We can also write _£ (/,i a product

=_/, • .3 . . ..,

We can continue to Eenerate even higher operators

_(n) .
{_<_,_.._/?) . The operators may be arranged in a hier-

archy with _ (//_) as the lowest member, S_(47170 ) as the

x;'second member, _/ the third, and so on. These operators

have been tabulated for re_ere@ce in Table I.

6.3 Equations for Operators

Each operator of the hierarchy is related to another

Me start with the operatoroperator by a differential equation.

(7o,i_._r/)_(ilp) = S+.:;13g(,jCp( 0 J_;;_z_ (6.3-1)

If the operator -_(ll;p) is integrated over the velocity _,

we find
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=._q_u.,o+_/:..;_

t ,n- I _'J

(6.3-2)

where we have used the definition (3.2-24) of the function

C (_,_) • we see that the seco=d term o_ (6.3-1) _y be

written 77_._,>m(,jfd_(/lToj,__j._and equation (6.3-i) becomes

l

(6.3-3)

The right-hand side of" (6.3-3) comes simply from the initial

condition for _(/lt) which is four_d_ from the relation for

Laplace transforms

(6.3-4)

We find affcer an inverse Laplace transform

_ (_Iz_=o):_1
where

(6.3-5)

<.>=ie.:.,-sm.<..
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The operator -_ (//_) satisfies the linearized Vlasov

equation (see Chapter 3) where we have llnearlzed about the

÷
distribution function at c = O.

The same procedure may be used to obtain equations for

other operator.s of the hierarchy. Thus, if we multiply

/p) .----(6 _" by 70 "2 K'/_ and rearr_nge terms we find

(6.3-6)

where we have introduced the notation

(6.3-7)

The right-hand side of equation (6.3-6) for ,:_:(_ij_)contains

a source term which is the product of the differ_ntial opera-

top ;_(,) and the density operator "-/_F(ij20) . The initial

value of &(%i] _) is found from a._elatlon similar to

(6.3-4) to be

: o (6.3-8)

We find upon taking the inverse Laplace transform of

(6.3-6) and uslng (6.3-8)

(6.3-9)
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The solution of the homogeneous part of the equation (6.3-9)

(which is _(/l_)_" (/_i/t=O)) vanishes by the Initial condi-

tion (6.3-8). The partloular solution of (6.3-9) is the only

non-zero contribution.

The same type of result is fou_nd for other _-o-o+_-° of

the hierarchy. We may write in general:

(6.3-10)

o,iVZ...,,,ir=o) = o

The source term in the equation for _- ?,,,_j,l .. _I21_ )

product of the differential opePator 2_ (I) and the next

lowest operator of the hierarchy.( (n, )

integrated over the velocity _ . Each operator of our

hierarchy is coupled to the one which comes Just before it,

so that the hier_rchy is built up _om the bottom. The

lowest operator _ (t/t) is uniquely determined by the

differential equation and initial condition (6.3-5). This

operator is then used to determine the higher operat6r _

_ (% _"/ _) from the differential equation (6.3-9) and the

initial condition (6.3-8). The operator _ (/_[]_) is then
t'l)

used to determine the next operator _ (/,z_Jt) and. SO on.

The reduction of many terms in the solution is not quite

as straightforward as we have indicated above.

is the

The reason for

the dlfflcul_yis that the solution (5.4-4) contains not only a
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/Ch

term where the single operator _(/#t) operates cn a

function _ _ i(_) but also terms in which a product of these

a
function of _ wave vectors _ U_--'_) • The reduced

function _ has the same properties as does _ (I)

i.e.

(6o3-11)

so that the term when reduced contains both the operators

"_(/#_) and _(l,i/t) . However, now there _ill be

such terms instead of one as we obtained earlier. The tech-

niques that are used tO handle these more complicated terms

are discussed in Appendix C.

6.4 Factorlzation of Initial Conditions

We assume in all that is written below and in the follow-

ing Chapters that the in&tial conditions may be factored. We

in Chapter 3 the reasons for writing £%_}It=o)
have discussed

as the product of 5- _ f_nctlons of velocity ¢_') and a

function f _l{U}/t= O) Of _ spatlal and velocity coordinates.

We now assume further that the lnlttal correlations between

particles vanish, and that we may write /%g({_/t=o)as a

product of _ single-particle functions. This assumption

represents a limitation upon the analysis analogous to that

imposed by the use of the Mayer cluster expansion (see ref.

(26) and Chapter I) In the HBG_f hierarchy. However, here we
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impose the restriction only as an initial condition. We

show in Chapter 7 directly from the solution that in a

collisionless plasma two particles which are statistically

independent initially, remain so in the limit of large times.

6.5 Refaced Solutions

The first three terms of the solutions for the single

particle function £ (/I"6) and the two-particle function

_'_ -

(t_ / t) are written below.

= P;.o_Jr)[.(,_t_o)

_ a 3

f

"* "> r-.)fd_ L.p (6.5-_)•jodr _ (/,_./.¢1

,..__ _,.,_ _ _,_ _,_.
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The term _ in the solution for _C/_#_ is identical to

the quantity within the brackets _ _ which precedes it

except that the indices I and 2 are to be interchanged.

The second term in the solution (6.5-1) for _(/It) is

characterized by a single integration over time. The third

has five different parts, each of which contains two integra-

tions over time. Three different operators are present in

this term. The fourth term (not shown) has 46 parts, each

of which has three integrations over time. The operator

(/_i 17,_ J t-% ) appears for the first time in this

term. While the formal solutions (6.5-1) and (6.5-2) are

valid for all times, they are unwieldy. We show in the

next Chapter that many simplifications may be made in the

limit as time becomes large.
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CHAPTER 7

TIME - ASYMPTOTIC BEHAVIOR OF THE SOLUTION

7 -i Introduction

The solution (6.5-1) for the single-particle distribution

function is a general solution of the hierarchy of equations

(5.3-4). We study below the long time behavior of (6.5-1).

If the plasma is unstable each ten of the solution has a

part which grows exponentially with time and dominates the

remaining parts in the limit as time becomes large. The form

of the solution can be greatly simplified if only the dominant

part of each term is included.

We determine in Section 7.2 the asymptotic form of the

solutions for the single-particle function _C//tJ and the

two-particle function _ (/_}t) . We then show in Section

7.3 (time-asymptoti any)thesolutionfor (//tJ
satisfies a linearized form of the Vlasov equation and that

the two-particle function is equal to a product of two single-

particle functions (two particles which were initially statis-

tically uncorrelated remain so). Ne note in Section 7.4

that the terms of (6.5-1) which represent corrections to the

first (Landau) term remaln_small for some short time (to be
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defined) if the amplitude O-- of the initial disturbance is

small. Finally, we observe that the assumptions (a) the

Plasma is "collisionless", and (b) the redistribution of

energy _hroushout the wave spectrum may be neglected have

been used to derive the hierarchy (5.3-4). Assumption (b)

is not a necessary one. Without it a solution for _ (/It)

could still be written in a form similar to (6.5-1). However,..

the solution would be even more involved in that the number

of terms would be greatly increased. In order to avoid the

complications that arise from the increased number of terms

we have made assumption (b) and have argued in Chapter 5

that the solution should be valid for some "intermediate"

times. We show that assumption (b) requires that the initial

growth rate of the disturbance be sufficiently small.

7.2 Time-Asymptotlc Form of the Solution

The first term in the solution (6.5-1) is identical to

...%

the Landau result. We assume that for each wave number K

in a certain range _/_

exponentially with time.

the zeros of 6{_,_0_ •

there is a single mode which grows

This mode is represented by one of

Theremalni zerosof C: p)(for
...%

the wave number/_ ) are assumed to lie in the left-half

-plane and so to represent damped modes. In addition to

the collective modes, there is the "free-streaming" mode

which arises from the pole at p =-_./_ . We denote by (1)

_, and -_',_../'_/respectively, and write the tlme-asymptotlc
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behavior of the first term as:

(7.2-1)

We need below both the result (7.2-1) and the integral

of (7.2-I) over the velocity _ . If _ (/I-[_-_) is an

absolutely Integrable function of velocity then the second

of the above two terms deca_s to zero in the limit of la_e

times. 45 The asymptotic behavior (of the integral over/_l )

is determined by the first term, and we find

t
(,It o_t-_. = (7.z-z)

where

(7.2-3)

The second term of the solution for

the factor

contains

_. .j.v

(7.2-z_)

which we write in detail as
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The time-asymptotic forms (7.2-1) and (7.2-2) for the operators

are used to rewrite (7.2-5) as

The factor (7.2-4), when it appears in the solution, is

always preceded by the operator _7_ (#) (see the form of the
K,

#

which involve the second velocity derivative of the exponen-

tlal _ -i_'_C,i_ , a quantity which grows In time as t 2.

However, these terms are Integrated over /_# . We require

that the residue _,(ll-iK'.._,) (whloh contains the initial

value function _, (/It--_) be a sufficiently smooth function

of _# that the second term of (7.2-6) vanish (after the

inteEration over _' ) in the limit of large times. We note

here explicitly that in order for this to occur there must

be a spectrum of unstable modes. Then:

(T.2-7)

where we have used:

(7.2-8)
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•_e relation (7.2-8) between _ and/_ follows from the

de:_Itlono_ £ ¢&p)
The function C (/I_) , which depends only upon the

velocity/_ and time, is a fundamental unit of our solution.

In order to w_ite C (/#t) in a more explicit form we note

(that the residue of E_, .-, at the pole _=_ (assumed

to be a simple pole) is C_6/_/_):_ -- -'"-(_/_)'so that
-//_

f_, Ol t-o)

7_,0_ = 36 (7.2-9)

C,_ /_,(4r--o)

-R_, = JE
(7.2-10)

If the relations (7.2-9) and (7.2-10) are substituted into

(7.2-7) we find

- -,-, _ I_,_ &'_!Zz-°_/_
/ ( ,..., KK • c_.'_

- _ o_i' Q, (,) e"_@ t

(7.2-11)
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_"_e asymptotic behavior of the second term in Che solu-

tzon for _ (//t)
-/

of the product of

is determined by the asymptotic behavior

Thus

az z

3

(7.2-12)

To evaluate the convolution integral we take a Laplace trans-

form in time and rewrite (7.2-12) as

(7.2-13)

The method of residues Is used to take the inverse Laplace

transform of (7.2-13). We have noted in Chapter 6 that the

unstable poles of the operator _ (/,i/_) grow in time as

e P_ and _e _,t . However, in the limit of large

times the poles of S'_(,',_;_) are dominated by the pole at

e3_tp=p_._, _ich _ows _pp_o_i=tely as ( _ is some
average growth rate in the zl/_ interval ), and we find
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We note tDmt the right-_mmd side of (7o2-14) does not vanish

in the limit as t--2 0 as does the left-hand side. If the

terms which arise from the poles of _, (!,[)_) had been

included in (7.2-14), the rIEht-hand side would also vanish.

It should be remembered that the relation (7.2-14)is correct

only asymptotically in time.

The asymptotic behavior of the third and fourth terms

of the solution for _ (/]t) are found in exactly the same way

as was done above. We see from (6.5-1) that the third term

has three parts, each of which is similar in form to the

second term Just discussed. The third term may be written as:

(7.2-15)

We note that the operator L(_') replaces _ by K and

_- by -_/ SO that in (7.2-15) :_ +#_. = _' • If a

Laplace transform is used to evaluate the convolution integral

in (7.2-15), we find the asymptotic behavior from the pole at

/_/÷_, ,",.2_. Cthe operator S_ (/,_:) replaces _. by Z

with the result
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/. /

, <iri'_ I I,, C" ' [ "

_--><,..jo-,_,<7.(J,,j,,/Ud,_.
,2. _

f _ +. '_-:t _ _ ._..-. t .-.'t t ,-0 "b • , _t 3 .
_<7._ (D'_9_/i/J<--o)iJ7o+(4-<i,-S",)_iz_Lr,,,V/,.;_;_(_.,-,_jl7)_.,..,(m,,/z'=o)

L_D,"W _._._, ..,_ ,_, .. .,,.,.(,,,_ ,_,_ -

:" j o " ,J ":_'._'_ '_'_

' l • # ,, I *

(7.2-16)

where we have

t=

or- L_(_) )

defined (compare with the definition (4.2-6)

= , _y(/O _/-; r_J- -_-_7_ _ (7.2-17)

The fourth term of (6.5-1) contains the factor

j ....i , -- I ...l ..,,, # ,.
-,-, _,(IG_lr:'o)

0 Lv ___t" .I ,_#"#e_l _/"r_
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cR.m __6,,r._ e_,r '* c" c)_,a) }

The convolution theorem for Laplace transforms is also used

to rewrite the fourth term of the solutlon fop _, (/J_)

The asymptotic behavior is determined by the pole at

The above methods may also be used to evaluate many of

the terms in the solution for ___ _/_) . One new problem

appears in the third term of the solution (6.5-2), where we

find a convolution in time of the product of the two opera-

tors S_(%i_t__)_._a(_lt_f) and a function ,_,_(/_,2_I_) •

The Laplace transform of the product of the two S_(_) operators
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lS

(7.2-2o)

where the contour C passes to the right of the singularities

of _(Q, RI¢ ) and to the left of the slnEularltles of

_(/,___)--z _ . The Laplace transform of _/_ (/_i_i_)

of the general form

lS

(7.z-zl)

where we have separated _'om -_-_ b_i_/_)

which lles f_rthest to the rlEht in the

long-tlme beha_lor of

the pole at p =

_ operators and

the pole (p = 70o )

p - plane. The

_,_ ('/,2, z'-.__ _) Is dete_ned by

700 so that the convolution of the two

_ (l_, _'_/5) beeomes, asymptotically In

tlme

We d_scuss In Sectlon 7.3 and Appendix D the evaluation of

convolution Integrals of the type appearlnE on the rl_t of

(7.2-z_).

To summarize, the as_nptotlc forms of the solutions for

(/l_) and (/=_It) are wrltten below.
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(?.2-23)

×

[ _,_,____,_,_,_,,._l,e.,-?e._Te_,___c_._,_
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_K

(7.z-24)
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7.3 Properties of the Solutions

Some of the properties of the solutions (7.2-23) and

(7'.2-211.) for _ (1]_',) and --/_,,_(/,_]t) are detex_Ined

below. The solution for the single particle function

is shown to obey the linearized Vlasov equation (5.3-6)

(i.e., the "quasi-linear" version). To obtain this result

the solution (7.2-23) is _ifferentiated with respect to time

and the following property of the operators (listed in

Table I) is used.

Dt

(7.S-l)

oeo, g <,,,;,..,,wtj, "

A straightforward application of the relation (7.3-1) to the

teras or (7.z-23) _or _(/It) yleZds

ag =
g 3

=_<,J Jr- -" -j (,_ o), Oo a - . .

a ,2 :1" ..= 3 , 3 _

Oilr) Oilr: t_;Xlr-r' L _1_' "
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We now show that the terms on the right-hand side of (7.3-2)

are equal in the limit _-* _ to the product of the

The spatially-independent function _(/lt) is obtained

from equation (2-9) for 7e'_°(t) . We integrate both sides of'

(2-9) over the velocities N-I, substitute the expression

(7.2-24) for lair) into the right-hand side, and

integrate with respect to time to obtain

(7.3-3)

1' 3 3

o _ a '_" _"

° "if" ° "



- 109 -

The integral of the function - (//,,,
.%

._ is from (6.5-1)

over the velocity

The relations (7.3-3) and (7.3-4) are used to write the

,_<,_0,_>_<,,)f_c,_t_,_ _ _.o_t_..,_-product

tracted from (7.3-2) to obtain the followlng equation.

X

-"o Y Y

f'- .l;;)_'< 4 <',>,-.-- o))
The te_ms on the rlght-hand side of (7.3-5) are evaluated

by the methods of Section 7.2. In the limit as _ -,_o ,

we find

rhs (7.3-5)
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(7.3-6)

In order to simplify (7.3-6) we Introduoe the expllelt forms

for the operators _R/ (/I¢) and _(/,i_/9) (see Table I).

We note that

,_4.÷i_4.

(_£/_z,) (7.3-7)

where we have used the definition (3.2-2_) for _ (_) and

the condition that C(_) = O . Equation (7.3-7) can be

used to rewrite the first term on the rlght-hand side of

(7.3-6) in the following way.
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(7.34)

One can show from a relation similar to (7.3-T) that

.>9)

Equation (7.3-T) Is used to rewrite the second term on the

right-hand side of (7/3-8) and to obtain
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The two terms (7.3-10) exactly cancel the second and third

te_ms on the riEht-hand side of (7.3-6). The above methods

may be used to reduce other terms on the right-hand side of

(7.3-6) and to show that each term is exactly cancelled by

some other. We conclude that the r_ght-hand side of (7.3-5)

vanishes and wrlte

(7.3-11)

This is the desired result.

As a further proper_y of our solution, we now demonstrate

that two particles remain statistically independent in the

limit as __-_ oo (we assumed in Chapter 5 only that they

were independent at _ = 0). The solution (7.2-23) for

(_t) is multiplied by the solution for _$,(//_)

and the product subtracted from the solution (7- 2-24) for

#

i̧ ./. • .
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are statistically independent

then the pa_i¢ies 1 and 2

(see Chapter 2). The methods

of Seotlon 7°2 are used to rewr!te (7.3-12) in the limit

-_ o_ in the followlr_ way

(7.3-13)

The stun of the thr_e terms which involve convolution inte_als

on the rlEht-hand side of (7.3-13) equals the fourth term

which contains no convolution inteEralo

We 1llustrate the calculation (for more details see

Appendix D) by conslderlnE the simplest pa_t of each term_ in

_,3_) _ o_e_o,, _,/_ _ &_,/_ ooo,_,_o_
i

twO terms (see Table I). If we define the lower case opera-

tots _(/]p) and _(/i/p ) to be the first part of

the operators _ (/_) and _. (/_iN) • respectively, then
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_:IG!I_¸

__i_i_'____i___i_!_ii_iii___iii_!__!!!_i__i!_!_ii_i!_i!i_!ii__!....

__ :,_,_ _ i_m(,i Jp,i_._,. r-"
(7.3-1_)

The simplest part of the first term on the riEht-hand side @f

(7.3-13) is then

£dp'

We use a relation similar to (703-7) to write

(7o3-15)

(7.3-16)

The relations (7.3-16) are used to rew_Ite (7.3-15) as

The inteEration over _/ is performed by closing the contour

to the left at infinity. The integrand vanishes as _,3

along the path of integration at infinity, so the only contri-

bution to the inteEral is from the pole _'=-_u_a inside
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the contour. We find that (7.3-17) becomes

The same methods are used to determlne the equivalent parts

of the second and third ternm on the rIEht-hand side of

(7-3-13). We find:

and

The sum of the three quantities (7o3-18)-(7°3-20) reducesaar_er

some algebraic manipulation to the followlng

(7.3-21)



- 116 -

The quantity (7.3-21) is exactly cancelled by the first part

of the fourth term on the right-hand side of (7.3-13).

The above techniques can be used to evaluate other p_ts

of the terms in (7.3-13). We show in Appendix D that some

parts of the f__rst th___ee te.wns c---_ce!. The inverse Laplace

transform of the remaining parts may be easily evaluated by

the method of residues. We find, after some algebra, that

the first three terms of (7.3-13) exactly cancel the fourth.

The same methods can be used to reduce other terms of the

e_presslon for ]_,_(/_lt)-_(,Jt) I_). Once again, corre-

spondinE terms are found to cancel one another. We conclude

that _
_ (/_t) = _/_(llt)_//_(_/_) , and that no correla-

tion between the particles i and 2 arises if the initial

correlation is zero.

7.4 Order of Magnitude Analysis

An order of magnitude analysis is used to estimate the

conditions for which the asymptotic solution (7.2-23) for

_C/_ _) is both a valid and a useful approximation

to the solution of the complete hierarchy of equations (2-17)

in the limit _-_ O . We have noted that the Landau solu-

-_ (llt)_ (/_= O) , has a part which, for an
tion,

unstable plasma, grows exponentially and, after a time,

dominates the remaining parts (which are either exponentially

damped or oscillate as C _'_'_'T ). If _ represents an

average growth rate of the disturbance then one can charac-

terize by _ the time at which _(/) _ 70#[ becomes



ji: : i i̧!ii!i ilii: i

- I17 -

_ _ i__ ii_'
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a good approximation to the Landau solution.

only require that _ >

term in the solution for

to the exact term.

Thus, we need

for the asymptotic form of each

;_t) to be a good approximation

However, in order for the asymptotic solution to be a

useful approximation, the adjustment through wave-wave inter-

actions of the plasma to the presence of the disturbance

must not begin on any significant scale until some time after

]
_ . In other words, the terms of (7.2-23) which repre-

sent corrections to the Landau solution must be sufficiently

I
small that they can be neglected for times t < _ . If

such is not the case then part of the reaction of the plasma

through wave-wave coupling takes place during the short

__/
times _ < _ . The form of the solution cannot be greatly

simplified for these times as the mode-coupling mechanism

does not dominate over the initial transients in the plasma.

The complete hierarchy of equat_.ons (2-17) contains, in

O , a term of the form _ _ (;_J _l) whichthe limit £

we h@ve discarded in writing the hierarchy (5.3-4). We have

anticipated in Chapter 5 that the contribution of this term

to the solution would, for a certain class of problems, be

small for some times of interest. To confirm this view, we

solve the complete hierarchy (2-17) in the limit _ -_ O and

use order of magnitude arguments to show that the terms which

appear in addition to those shown in (7.2-23) are small for

some "intermediate" interval of time.
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7. _. 1 Di f__sion Terms

We consider the integral of _ (/It) over the velocity

/_/ , a quantity related to the electric fleld _(t). The

first term of the solution (7o 2-23 ) becomes

p_._._,_ e_: . _ e_: (7°_.I-I)

andeBn be characterized by the order of magnitude

(7.4.1-2)

The parameter O- comes from the initial value function

(I#_=o_ present in _ o In order to characterize the

order of magnitude of the second term of the solution

(7.4.1-2) we use the relation (7-3-7) to write

... [iD, z_O d47,_.

(7.4.1-3)

I£ _/ is small we may replace

by

(7.4._-4)
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and write the first terms of the solution for

(7.4.1-5)

The second term within the brackets is simplified by substi-

tuting (7.2-11) for C_/ (/) and using the PlemelJ formula

(4.3-15) to evaluate the integral over _t in the limit _/_O.

Taking note that, aside from the factor (_,_i_/_) I , the

integrand of (7.4.1-5) is an even function of _/ we find

The velocity dependence of (7.4ol-6) is dominated (in

the limit of large times) by the exponential factor _#_,t.

We have assumed that the unstable modes are confined to a

small region A _ of wave number space. The initial growth

rate /(_) (considered now to be a function of velocity)

is a positive function of _F_ only in the velocity range
-_.%

Z_V which corresponds to the velocities of the unstable

modes in the wave number range A_ . Thus, the exponential

e _(_,)_ and therefore the quantity within the brackets

of (7.4.1-6) becomes a peaked function of velocity with a

width AV and a maximum _ear the initially most unstable
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mode. T--he amplitude of (7.4.1-6) outside

,mall(o_ O (_)).

_V

The order of magnitude of (7.4.1-6) inside

characterized by ( V is in z_V )

is very

nV is

_- o-_ e _(_) (7.4._-7)

Thus, the second term of (7.4.1-5) may be written

(7.4.1-8)

where _ is some average growth rate. The growth rate

(for small _ ) is found from the Landau solution to be 29

(see also (3.2-25))

= -_'1_1 (7.4.1-9)

If we assume that and that
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(see the discussion following (8-17)) then the ratio

as the growth rate

be written (for _ > _

has the same order of magnitude

, and the magnitude of (7.4.1-5) may

)

E (t) J, ?--e .. • (7.4.i-ii)

All additional terms of the solution for E/J_) can be

characterized by an order of magnitude which is some power

c
of the quantity ( _- _ ).

We have argued that the asymptotic form of each'term is

!
a good approximation for times _ >7 " We Jee from (7.4.1-I1)

that if (_-Q/_) is a small quantity then the terms of

0 (_ e _t) (which we henceforth refer to as the

"diffusion" terms because, as we show in Chapter 8, they lead

to a diffusion of the distribution function _o(/l_) in

velocity space) do not contribute significantly to the solu-

tlon for (_) until some time _ >_ . However, if

(0-_/_) is not small then the diffusion terms begin to con-

tribute significantly to the solution before they can be

approximated by their asymptotic form (i.e., T

for _ _ ). In the latter case, part, if not all, of the

readjustment of the plasma through wave-wave interactions

takes place during the initial stages of development of the

disturbance. In order to determine the nature of the solu-

tion for short times ( _ < _ ) It is necessary to include

the contributions from the poles of ,_/_) in the
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evaluation of the convolution lntegral (7.2-14). Further,

the free-streaming _-i_[-- and additional collective modes

must be included in the time dependence of _(//t)_(i_=o_

(see the discussion of (7.2-1)). The short-t_ne behavior of

the solution becomes very complicated and the complete

readjustment of the plasma to the disturbance due to wave-

wave coupling can not be followed. We assume henceforward

that the initial amplitude O-- of the initial perturbation

is sufficiently small that o-_ ,< J .

The wave-coupllng terms in (7.4.1-5) began to exert a

siEniflcant effect upon the solution at a time _ whleh may

be characterized by

However, we note from (7._.1-12) that at time _ , O-e_f_ '/_,

and the electric field has an order of magnitude (see (7.4.1-Ii))

-,-
(7.4.1-13)

in agreement with the conclusions of Frieman, Bodner and

Rutherford 43, and Aamodt and Drummond. 39 The initial Erowth

rate characterizes the amplitude of the electric field at the

time the wave-wave interaction terms begin to control the

development of the disturbance. When (7.4.1-13) is combined

with the condition that 0-__ we find
" V
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We conelude _ (7.4.1-14) that the initial amplitude of

the disturbance must be small compared with that at the

time _ in order for the asymptotic for_ of the solution to

descrlbe the initial stages of the adjustment of the plasma

to the presence or a disturbance.

7.4.2 Redistribution Terls

There are many wave-coupling terms which have not been

included in the asymptotic solution (7.2-_3) for _ (/_ t) •

In order to estimate the eontribution of these terls we

It) and

take a Fourier transfor_ in bhe spatial variable _ to
I

obtain

- , .

Equation (7._.2-i) may be solved in terms of the propagators

_ (/It)•

(/it) _, (/I'[) _ "_ _'_

•, ,, (7.z_.2__)

/ " (/"if)_/



- 12_ -

IS we substitute in the second term on the ri_ht-hand side

_N,Q .

of (7.4.2-2) the solution or the equation for /_ (_//_)

we find

Jo J

J

(7._.2-3)

which becomes after an integration over the velocities

o eo

_ o_e._o__G_'_ , ._e°_o_o.__ = _o_on_'_
of the velocities _ and _. and the wave nmnbers _ and

becomes, from ( 5.3-1 )

(7..._-5)

where an integration by parts has been used to write (7._.2-5).

The asymptotic behavior of the term shown on the right-

hand side of (7._.2-_) is determined by the factor
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to evaluate the convolution integral in the limit of large

times. Me can continue to sub_tute for terms on the right-

hand side of (7.4.2-2) and obtain a complete solution (in

the limit _-* 0 ) for the single-particle: flmction. The

leading terms are

The solution (7.4.2-6) contains all wave-wave interactions,

including those which lead to a spreading of energy through-

out the wave spectrum.

We observe that the coupling between waves may be

divided into two categories. Interactions between the waves
..aJ

/_ and __/ , represented by the opera'or I. (/_') , are

found to lead to a dlff_sion of the distribution f_notion

_(//_) velocity space; interactions between thein

waves K-KJ and _' , represented by the operator _(_) ,

are found to lead to a redistribution of the wave energy.

We therefore refer to L(/_) as the "dlffl_sion" operator and

/_(_) a8 the "redistribution" operator. Every term_fl;the

solution for _ (/It) but the first contains some combination

of the s_ operators.
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The order of magn%tudes of the first terms of (7._.2-6)

have been discussed. The product _ (/) _; in the

third term is proportional to the square of the amplitude 5-

of the Initial perturbation. Me once again approximate

,,'p_) .-,- j
,.-]-K

and

,-. 0(6-°e°_'_)

to write the order of magnitude of the terms on the right-

hand side of (7.4.2-6) as (see (7.4.1-11))

..  /tf -.J

_o e._Yt"t" _ • ° • (7._.2-8)

We note from (7._.2-8) that the relative importance of

the redistribution and diffusion terms is determined by the

g_owth rate _ . If _ j then the diffusion ter_s domi-

nate the redistribution terms, and if _ >i the latter

tez_s dominate the former. We may interpret this result by

notiag that the redistribution of wave energy through the
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Thus, the asymptotic solution (7.2-23) for _ (/It)

/

is not valid for all times _ >_ . It is valid only in an

"intermediate" interval of time which we may characterize by

inter-_edlate times: _ < t _ 9"
(7._.2-lO)

The length of the intermediate interval is inversely propor-

tional to the growth rate. If _ is very small then the

amplitude of the disturbance is limited to small values

( _(_) ) by the diffusion of _oC/l_) in velocity

space, and the redistribution of wave energy takes place so

slowly that its Inf'luence is not felt un_l well after

diffusion has been completed. However, with increasing

values of _ the energy redistribution becomes stronger

and may exert a significant effect upon the behavior of the

plasma while diffusion is still in progress.
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CHAPTER 8

SIRPLIFICATION OFT HE SOLUTION IN THE LIRITOF

SMALL INITIAL GROWTH RATES

The growth rate _ (normalized with respect to the

plasma frequency) determines the relative importance of the

diffusion and redistribution terms in the solution for

(S_) . If [< 1, the diff_asion terms provide the

dominant correction to the Landau result for an intermediate

interval of time which has been discussed. We show in this

Chapter that if the growth rate is sufficiently small that
\

teI_s of O(_) may be neElected companed to terms of _(1)

then the solution, for these intermediate times, reduces to

a form whlch is in essential agreement with that obtained

from quasi-linear theory.

We found in Chapter 7 that the solution (7.2-23)

(without the redistribution terms) fop the single particle

distribution function satisfied the linearized Vlasov equa-

tion (7.3-11) and that the two-particle f_nction, if it

_ould be factored initially, remained factored. The spatially-

homogeneous function _o(//_) and the dlstu_bance_(/It)

then obey, for intermediate times, the following set of
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coupled equations.

(8-I)

The relatlons (8-1) may be comblned to wrlte

An order of magnltude analysis Is used to show that the

term on the riEht-hand side of (8-2) is of _(_) compared

to the terms on the lef_. If the solutlon (7.2-23) for

_(llt) ri_t-hand side of (8-2)is substituted into the

we find

The right-hand side of (8-B), as a Ibmction of velocity, is
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very small (of _ (_-_)) oubside of the velocity range centered

about the most unstable mode. The order of magnitude of (8-3)

inside A_/ can be characterized by

The correction term (8-4) increases exponentially with

time. At the time _ when the diffusion terms f_stbbecome

important (from (7.4-11), _e _ _ ) the correction (8-4)

is of _(_. However, at time _ the second term on the

left-hand side of (8-2) can be characterized by the order of

Itgnltude (we use IE_('_)/_--_ " flmm (7.4-12))

If _ is Bufficiently small then the term on the right-hand

side of (8-2) may be neglected compheediwith the terms on the

left, and we find

(,It) Jdi " O) (8-6)

As a matter of convenience we have included in the denom-

inator of the integrand of (8-5) the initial values of the fre-

quencyand _owth rate Dather than the time-dependent quanti-

ties associated with the quasi-linear solution (see equation

(3.5) of _ef. 23). The difference between (-zLD_*_i_._)-I

and (-Z_(t)*_(t)* iK_'J_, )-i in the integral over _ is

. ,:'. , _., -':. , .-_ ,' "-._ l_ _ :l '"



- 132 -

of _([) and so is a eoxTectlon which is of the same order

of maxnitude as the term discarded f_om the rIEht-hand side

of (8-2) (see also the dlscusslon following (8-11)).

Equation (8-6) describes the diffusion of the spatially-

homogeneous part of the distribution function in velocity

space'(there is a velocity derivative in the operator /_0))-

The diffusion coefficient depends upon ! which

we may calculate from the solution (7.2-23) for _ (/1_) • An

,_o° _o_l__ _,Jt_l_ _,_o__,_._._._,(___)
over the velocity/_ , multiplying the result by (lit)

and differentiating with respect to time to obtain (multiply

by _ _(K) to obtalm the square of the electric field)

The second term on the _t-h_d side of (8-7) contains the

operator -_(11_/_,,,,.,1_,)i.._ (I) which we may expand about

the point _ in powers of the small quantity _, .

(8-8)

We have defined the new operators

7"_'(_) _-- (8-9)
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(8-1o)

To obtain the expansion (8-8) it has been necessary to

write

f = f , _, I . (8-11)

The relation (8-11) does not converge for values of

velocity for which I K'_-_l < I_l • However, the series

(8-11) always appears with some function:; of velocity

i/3_(/) _-(/_,) in an Integral over the veloclty _ ,

( for instance, _F ('II_ 0_*'9_') i.Z)£(,) _r't/_) ). If each

term, but the first, is integrated by parts (the function

_(_,} vanishes as /_-_oo ) the n th telnn of the series

becomes the

in powers of

functions

of the real

n th temn in a Taylor expansion of i/_)/_0)_-(/_,,)

_(_ ) which are analytic in the neIF_hborhood

axis. We require the Emowth rate to be

sufflclently small that we need keep only the first term in

the expansion.

as

We may use (8-8) to approximate the second term of (8-7)

0* t. " e O) (8-12)



Similar approximations may be used to evaluate the remain-

ing terms of (8-7) with the following result

(8-13)

The first correction term to (8-13) is

- _t #_<_)I° (8-14)

whieh is of _(_) compared to the terns on the right-hand

-, _%/_t_;_ .. 3,. ).side of (8-13)(fx'om (8-5) and (8-6) (_/_ V

In order to simplify the relation (8-IB) we note from

(8-6) that the most slgnlficant change in _o (/jr) with time

takes place in the small region _ centered about the

wave velocity of the most unstable mode (see also the dis-

cussion following (7._-6)). The quantity ({o (/It)- _(/)) is

small outside of AV . We use the PlemelJ formula to write,

in the limit of small

C_ "_"<'>(t=<,,t>-<p<,>)- (_<,,,'_-<p<,>)
(8-15)
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where (see also (3.2-25))

(8-16)

We note that the denominator of the principal value integral

in (8-15) is an odd function of the velocity _ inside AV

whereas the numemator is an even function. We therefore

expect the prlnclp&& value integral to be small, certainly

no larger than the second term of (8-15).

The PlemelJ Soz_nula may also be used to evaluate _/_

The ratio of the real and imaginary parts is

J ..u,-aJ /¢

(8-17)

If the first and second derivatives of the distribution

function _(_ ,! at the velocity _j = _0K/K are considered

to be of the same order of maEnitude _hen the ratio (8-7) is,

from (7._.1-9), proportional to the growth rate _ . We

infer from the condition that [ be small that the real

part of _E/_ is small compared with the imaginary part.

The operator _ (I) appears in summation with its

complex conjugate in equation (8-_4). We require, then, only

the real part of the operator _ (I) . To applm_Imate the

real part we use the imaginary part of the numerator and the
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imaginary part of the denominator of (8-9) to write (the

errer is or 0 (_'))

The result (8-18) is substituted into (8-15) and the defini-

tion (7.4.1-9) of the Landau growth rate _g used to

obtain

_t (8-19)

where

k2 . t(= . (e-2o)
-K

The relations (8-6) and (8-19) describe the self-llmit-

ing of the instability at some maximum amplitude. If the

plasma is strictly one-dimensional (the infinite magnetlc

field problem of Aamodt and Drummond 39) th_n, accordinE to

the equations (8-6) and (8-19), the instability grows until

a spectrum of waves is established, and the disturbance

remains at equilibrium thereafter. However, if the 'plasma
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can support a three-dlmensional disturbance then the dis-

tu_bance, after reaching its maximum amplitude, g_adually

begins to decay, as discussed by Ber_steln and Engelmann. 21

The approxlmate results (8-6) and (8-19) have been

1 4 _4obtained from the exact solution (7.2-23) of the ..nea..zed

Vlasov equation (7i3-11) by an expansion in powers of _ .

The Erow_h rate is assumed to be sufficiently small that terms

of O(_) may be neglected compared with reruns of O(i_ •

This assumption is less restrictive than that made in

Chapter 7 where the redistribution terms were discarded on

the basis that they were an order _ '/_ smaller than the

magnitude of _ (t) . The redistribution terms represent

the dominant correction to the results of this Chapter.
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CHAPTER 9

APPROX]_NATE CALCULATION

An approxi_te calculation is made to determine the

variation of the electric field enerEywlth time. The

advantage that the approxlmate method enjoys over the

numerical calculations used until now is that the basic

parameters of the system can be varied and the correspon-

dine Er_w_h and self-li_itlng of the disturbance easily

determined. The approxlmate calculation is limited to

the enerEy in the most unstable mode. However, the results

are shown to have a more general application.

The discussion is limited to the case of a one-dlmen-

sional plasma (the InflnitemaEnetic fleld problem of ref.

39). An appr_xlmate solutlon for the electric fleld

durlnE an intermediate interval of time has been obtained

in Chapters 7 and 8. The relations required for the

present discussion are obtained from Chapter 8 by InteE_a-

tlr_ equations (8-6)and (8-19) for _ (]/_) and

with respect to time. If the solution for _(/_t)

substituted into the definition (8-20) of _ (t)

PlemelJ formula Is used to Inte_ate over

(+)

Is

( the

K ) .e rind
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IE_(o)I_ I, theinlti.l_-l_eo: IE.It)}_ _a

E(_It)- (E_(t_)__-_ . The two rel.tlons (9-i) ,rod

We arEue, as in Chapter 7 (see discussion following equ.

(7.4.1-6)) that the time-asymptotic behavior of' the quantity

within the brackets of' (9-3) is dominated by the exponential,

not by the Initial value I E(zl_o)l _ , and w_Ite

=
t (9-4)

The ri_t-l_nd side of (9-4) may be s_plified. The

gro_h rate _" (_/I t) , considered as a function of' velo-

city, is initially distributed in a way similar to that

shown in the sketch below (we show only the unstable modes).
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G
I I

I l

>U

We designate by Un_ the velocity at which _(a) (and

therefore the slope _(u)/_U ) has a maximum positive value.

curvature o_/c_L_-- is negative. We note from theThe

Dznm_ond and Pines calculation (Fig. 4 of ref. 23) that the

maximum positive slope within the bump of the distribution

_(I_) remains, as a function of time, nearfunctlon

the same veloelty ( 2/_ "_ 4.7 for ref. 23). The wave mode

whioh Inltlally has the maximum growth rate continues to

have the maximum growth rate for all times (see also Fig. 5

, IE(ult)l aof ref. 23 where the maximum in the curve oo---_

is shown to remain at approximately the same velocity for

times). Thus, we may rewrite (9-4) ( _/_U,_ = O)all
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(I} _ _(ul?)) (t)la (9-5)

_'(_))_d £_(t); _e theg,o_h rate_d electriowhere

field of the most u_ustable mode.

The Inte_n_al of (9-5) over time is evaluated by expan-

ding the growth rate about its initial value.

(9-6)

The result (9-6) _s substituted back into equation (9-2) for

JE_(t)J_ to obt,_

(9-7)

For convenience, the function _r-(ZL) of time is defined as

Fft) = ez.p

Then

IE_(t)j_ --IE_(o)l_F(t)
(9-9)
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T(L_) depends upon the initial conditions on the problemA

The asymptotic value of T(_) is found by taking the

log of both sides of (9-8) to write

i÷

T(t)
(9-1o)

In the limit of large times the denominator of (9-10) must go

to zero (if _(_) is to remain finite).

The asymptotic value of

that _a_(1_O)/_ _ is negative.

of the electric field, which becomes

(9-11)

IZta(°)l

T(_) is positive by the condition

The asymptotic -value

IE.e)l -
t..,_

(9-12)

is independent of the initial perturbation and varies with

the characteristics of the initial bump on the distribution

function. The larger the value of _m the higher the bump,

the curvature _'_'(_JO)/c_,_.a the widerand the smaller

the bump. The result (9-12) indicates that in general the

larEer the area underneath the bump the larEer will be the
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equilibrium energy of the initially most unstable mode.

 ot., ,e then

_ (9-12)

'',Fete,"~

in agreement with the results of Section 7.4.2.

The relation (9-7) has been used to plot in Fig. I the

energy in the most unstable mode as a function of time.

Included also are the results of a numerical calculation by

_ond and Pines. 23 The initial amplitude _ (o) and

the initial growth rate _ for the approximate calcula-

tlon have been matched with the corresponding values of

ref. 23. The maximum amplitude has been normalized to unity.

Although the approximate calculation takes a longer time to

reach the final equilibrium state than does the numerical

calculation (see Fig. i), the similarity of the two curves

for times _ less than I0 -_ plasma periods should be_,noted.

The approximate method appears to predict correctly the time

interval in which the most rapid readjustment of the growth

rate of the most unstable mode takes place.

The results of Fig. i have a wider application. The

stabilization time of the most unstable mode is a character-

istic time for all the modes in the plasma. Drummond and

Pines have shown that even a mode which is initially stable

and becomes unstable during the development o_ the distur-
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0

I i
Drummond & Pines (Ref.

(um :

I_roximote Calculation

2,000 4,000 6,000

TIME,t

! I

8,000 I0,000 12,000

Fig. i. Variation of the energy in the most unstable

disturbance wlth time.
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bance finally levels off at an equilibrium amplitude in

approximately the same time that it takes the most unstable

mode to attain equlllbrlum. Thus, (for the case shown in

Flg. 1 ) the time _ _ 10 _ plasma periods ls oharactePistlc

of the time In which all the unstable modes have undergone

most readjustment of their growth rates.

The advantage the approximate method enjoys over the

numerical calculation Is that the parameters of the system

can be varied and the resultlnE behavior easily dete_nlned.

As an example, we note _ the discussion in ChRpter 7 that

the smaller the initial Erowth rate the later in the devel-

opment of the disturbanoe does the redistribution of enerEy

in the wave spectrum become important. The approximate

calculation can be used to estimate the magnitude of _ for

which the redistribution terms begin to significantly alter

as the dlf_xsion of _o (/If) in velocitythe solution

space nears completion.

initial to the final values of the energy is considered a

constant (0.08 in Fig. l) then _-(_) is a function only of

the quantity _m t . The period _ t of greatest _eadJust-

ment of the plasma to the disturbance ( _t _- 104 in FiE. 1)

directly with _/m " The initial Erowth ratethen scales

approxlmately __ --_ 3.3 x 10 -4, andis

_ -_constant _ 3-3
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We have denoted by _ the tlme at which the diffusion terms

o-_ a_
first become Important (fl_om (7.4.1-12), "7" e _-._ )

and by T the tlme at which the redistribution terms first

become signifY_cant (from (7.4.2-9), 7_~_--_/ (_C____) ).

The lnltlal a_plltude O- may be eliminated f_eom the

relations for _/" and _/- to obtaln

If the coupllng between different wave modes ls to become

Important Just as the velocity dlff_aslon nears completion

then we requlre that T'_" _ , and f_om (9-14)

E,,,(,,_a,_)
"J_'(....O-a ) -- 6.6 (9-16)

To eliminate E_(_ from (9-16) we note from Chapter 7

that _ _- Em_ (1") . The result E_ (max)//E_.l,) -,, lot

ls then used from Fig. 1 to rewelte (9-16)

whlch we_may: solve for

--- 6.6 (9-17)

_,,,,.---io-4 (9-1S)



If the growth rate (normalized with respect to the plasma

frequency) Is smaller tha_ 10 -4 then the dlf_uslon can be

expected to be nearly comple%ed before redistribution of

the wave energy begins to take place. However, if _._ is

greater than 10 -4 then significant spreading of the wave

energy begins while diffusion is still in progress.
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CHAPTKR i0

CO CL r Q

The approach to the kinetic theory of plasmas which

has been presented lies between the approaches which employ

diagram methods and the approaches based upon the BBGKY

hierarchy. The former start from a direct solution of the

LiouWllle equation and eliminate excess information after

the solution has been obtained. The number of different

coordinates is enormous and diagrammatic methods are

requl_ed to simplify the terms. On the other hand, the

BBGKY approach, which disregards excess information from

the start, leads, in the collisionle|s limit, to a non-

linear equation which has defied nearly all attempts at an

exact solution. The method discussed here eliminates only

part of the excess information at the start; all N velocity

coordinates are retained in the formulatlnu. As a conse-

quence, the equations of the theory are linear and the

differential and integral operators are independent of time.

However, the number of independent coordinates is not so

large as to require the use of any diagrammatic techniques.

The present method appears to be particularly useful
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for studying plasma in the "colllsionless" regime. In the

limit _ -_ 0 , the hierarchy of linear equations reduces

to a form which can be solved in detail. The solution for

any distribution function, which can be written entirely in

terms of the initial conditions on the problem, includes all

wave-wave interactions. The form of the solution can be

simplified by assuming that initially the distribution i_unc -

tion may be factored into a product of single-particle fUnc-

tions. It follows directly from the solution that the

distribution functions then remain factored at later times.

We have considered in detail the problem of an

(initially) small amplitude disturbance in a weakly-unstable

plasma. In the limit of small growth rates an expansion in

powers of _ can be used to evaluate the fundamental ele-

ments of the solution, i.e. the singular velocity integrals.

If only the first term in the expansion is retained the

resulting approximate solution for the single-particle dis-

tribution function is found to be in essential agreement, _

for an "intermediate" interval of time, with the results of

quasi-linear theory.

However, there are many problems of practical interest

where _ is not small, and the approximations of Chapters

7 and 8 are no longer valid. In particular, problems with

_- 1 havehave been discussed in connection with shock

waves in plasma guns. _6 The general solution for the single-

particle distribution function, obtained by the methods of
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Chapters 5-7, is still valid for these values b_ the

growth rate as it includes all wave-coupllng effects and

,has been obtained without the use of any perturbation

methods.

However, the solution in its general form is very com-

plex, and some simplifications must be made. For a strongly-

unstable plasma, the solution could be simpllfied by consld-

ering the problem of two interpenetrating streams of cold

gas. This moP,c! has been discussed by Parker _7 in connection

with shock fronts in astrophysical problems. The distribution

function for each stream becomes, in the limit that the temp-

erature approaches zero, a delta function centered at the

velocity of the stream. In this limit, the fundamental units

of the solutlon,t_ singular velocity Integrals, could be

evaluated and a simplified form of each term thus obtained.

However, the solution would still involve an infinite number

of terms, and these would have'_o be rewritten in closed

form before a complete understanding of the solution could

be obtained. The solution mould be compared directly with

the results obtained from the computer experiments of

Buneman 48"_9 and Dawson. 50 It is planned to investigate

this possibility as an extension of the present work.
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APPENDIX A

"."dO P.a_RTICLE" PROBLEM

The s_f-adJolnt nature of the operator matrix V in

equation for the vector t6_)ii has been discussed inthe

Chapter 3. In this Appendix, we study in detail the s_eotal

case N = 2 and obtain explicit solutions for the elgen-

vectors, The eigenwLlues are degenerate in that two eigen-

vectors are found to correspond to each elgenvalue. Since

the elEenvectors are orthogonal and form a complete set,

the solution for _(_t)! may be expressed as a sum of these

elgenvectors with appropriate coefflclents. The coefflcl-

ents which at time t are related in a simple way _o the

coefficients, at t = O, are shown to oscillate harmonically

in time at thelP chal_cteristlc frequency. It should be

stressed that this problem has no real physical slEniflcance

since the equation for ----fH_'(/I_) was derived on the

basls that terms of O(_) could be neglected. The dls-

cusslon below is meant simply to 111ustrate some of the

mathematical remarks made in Chapter 3 about the properties

V.of the self-adJolnt operator. N
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The operator 7

below.

for the special case N = 2 is reproduced

=

The only component of velocity which appears in this operator

is the component parallel to K . If we denote by _i and U_

the components of /_a and parallel to the direction K

and assume that the Intermolecular potential is the Coulomb

I

potential ( _[X) =_ ) the operator y becomes

I K u/

(A.-2)

The elgenvalue problem we wish to study is formulated as

(A-3)

where _ is the eigenvalue and

dimensional) eigenvector

is the corresponding (two-

If we introduce the new independent variables _ and
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5 =/<c_,-u_)

: K_u,,zz=)

the eq_tions (A-3) become the f_llo_ng

(A.6)

h,4o). (_-j-f-,_),4(_) = o

Note that these equations do not contain derivatives with

respect to _ . Since _ is proportional" to the total momen-

tum of the (two-parti_le) system, and is therefore a constant

of the motion, we expect it to enter our solution only as a

parameter.

The equations (A-6) are to be solved simultaneously for

the f_mctions _ (1) and _(_). It is convenient to introduce

the new dependent variables

and rewrite the equations (A-6) as

.C -S -o
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w

We eliminate the quantity_

plying the first by ( _-_ ),

(_ _ _ )_d ._bt_t1_g.

from these equations by multi-

operating on the second by

H÷=o

The solution to equation (A_9) (for /_ real) is

H* : .Z)_if) (A-lo)

and

is the Weber function (see Norse and Feshback 51 )

m -(;_-;_)_-/ (A-_II)

Although the function _(5) is defined for all real

values of D_ , the condition that the eiEenihmctlons be no_nal-

izable restricts us to values of D_ which are zero or an

integer. If fYI is not zero or an integer the asymptotic

bettor ofthe_ctlon_ if)as5_ -__ is

- (-SF+' a_ 5"--'- _

CA-12)

These choices for Dq must be rejected because of the singu-

larity in the Weber functions as _-_-_. However, if m is

zero or a positive integer, the Weber functions are simply
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related to the Hemmlte polynomials

(A-13)

where the exponential e -_ assures proper behavior at the

linLits_-_!_. The Weber functions are orthogonal. We have

oo

-co

(A-14)

_ , is the Kronecker delta. Fumthevmore, the Hemmltewhere

polynomials _/_(a_) form a complete set. Thus, it is possible

to represent an arbitrary function as a sum of the quantities

_([) with appropriate coefficients.

If the solution (A_IO) for H ÷ is substituted into the

second of the equations (A.-8) then

(A--15)

The following relation for the Weber functions

(A,.-16)

may be used to write

/_/-= ÷ 2' l)..,_9) (A-_T)



Thez: _+ in (A-17) fol_ows from the fact that the square root

of a quantity ((/7l + 1) in this case) may be positive or nega-

tive. The result that two solutions ,_-exist for each value

of _q leads to a _egener_cy or the eigenvalues; two eigen-

vectors are obtained for each eigenvalue.

The same symmetry must exist between the elements of the

eigenvector _ as between the elements of the vector /(t) .

The second element of _ is therefore related to the first by

an interchange of the velocities _ and Z_ . We introduce

the variables _, ÷ Z_a and _ - Z_ and rewrite the function

0) as the sum of a term which is even in _s-_a and a

term which is odd in _l-M_ "

(A-18)
-,-

The subscripts e and O denote, respectively, functions which

are even and odd in the velocity difference _j-_ , We

conclude from (A-18) that the function _ is even and the

function _- is odd in the variable _ . The Weber functions

have the property that _3 (_) iS an even function of _ if m

is zero or an even positive integer and an odd function of

if ,l is an odd integer. The condition that H' be an even

f_Auction of I then restricts Oq to values which are zero

or even positive integers (see (A-IO) and (A-17))..

The eigenvectors ~_m become (for _ even)
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_t ! I),.__) tl_;?ID,,_,(_)1

(A-19)

where the superscript + or - follows from the sign in the

flrst element of the vector _m " The constant A Is to be

chosen from the normalization of the etEenvectors. Since

-_)_) ls always an odd function of the velocity difference

_l- _& , the elEenvector _- Is related to the etgen-

vector m by an interchange of the velocities _/ and _a

The orthogonality of two eigenvectors _m and _,

follows from the orthogonallty of the Weber functions.(see

_Arl4)). If we consider the vector inner product of two

"plus" elgenvectors, then

co ¢_

=
(A-2o)

The identical result is obtained from the vector inner product

of two "minus" elgenvectors. There remalns the case of the

product of a "plus" and a "minus" eigenvector.
cO ¢O

5 's : f_/s(z,.,
=0

(A-21)
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where we have once aEain used the orthogonality relations

(A-14). If the elgenvectors are to be norlallzed to unity

we find from (A-20)

(A-22)

An arbitrary vector ;(_) may be written in terms of

these elgenvectors In the following way

(A-23)

where we have noted explicitly that the coefficients _m are

i_nctions of _ and _ . The coefficients are found by

taklnE the vector inner product of (A-23) with an eIEenvector,

InteEratlng over the variable _ and using the orthogonallty

relatlons (A-20) and (A-21)

oo

( A-2/_ )

where we have assumed that the eigenvectors have been normal-

ized to unity.

To determine the time dependence of the coefficients we

substitute the expression (A-23) into the differential

euqatlon for ;(_

(A-25)



The oz_,hogozuallty of the elgenveotors and the relation (A-3)

are used to write

t),/A- ,t) : o (A-26)

The solution to (A-_) is

where

The oscillation frequencies of the normal modes are found to

vary with the total momentum (proportional to _ ) of the two

particles. The coefficients _*(_) and _-(_) may be found

from the initial value of the vector f by (A-23). The solu-

tion for all later times is then found by substituting (A-27)

into (A-23).

It is interesting to note that the independent variable I

is the product of the wave number K and the velocity dif-

ference _-_ . If the eigenvectors are viewed as functions

of velocity then the "spread" of each eigenvectOr in velocity

space will vary with the wave number K • In the short wave-

length ( K _

near the origin

expect that as

) limit, the eigenvectors become concentrated

_j- _ = 0 because of the factor, e -_/V.. We

K _ _ more and more of these functions
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will be needed to represent some function with a finite

spread in the velocity variable _,-_. Since each mode

oscillates at its own frequency, the lamger the number of

modes, the lamger the number of frequencies that are present

and the more quickly we can expect the coherence of the dis-

turbance to disappear by a phase mixing process.
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APPENDIX B

COR___IONS TO THE L_NDAU SOLUTION FOR

The solution of the homogeneous equation for _ (/_t)

when integrated over all velocities except _ , is found to

agree with the result obtained by Landau only after some

terms of (_ (_) have been discarded. The solution as

written in equation (3.e-20) is a series in ascending powers

of the quantity Z (_,_) . The number of texans that must be

dlsearded increases as one goes to higher powers of L(_p)

Eventually, the number of "correction" terms becomes so

that despite the fact that each is only of _(_)large

their total contribution can be as great as that of the

terms retained. We take a term by term inverse Laplace

transfomm of the solution for _ (/_) and estimate the

time t at which the _ th term in the series becomes of O([_; i:If

the _)th term is the one in which the correction terms have

the same contribution as those retained then t characterizes

the time at which the correction terms begin to exert a

significant influence upon the solution.

We consider the doLinant contribution of these correc-

tion terms. The first element in the third term of the
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,olut!on(3.2-!5)forthevector~/2;p_is

(B-I)

where we have separated the correction terms from the "LandaU"

pamt of the solution. The correction terms are distinguished

by the repetition of the index 1 in the operators_(_').

There are (N-I) such fezes, each of which is of O(_). The

fourth te_m in the solmtlom for D (/_) oontalns three differ-

ent terms where there is a repeated index. These are

(B-2)

There are six different types of times with one repeated

index in the fifth term of _ _/_). In addition, there are

some terms with two repeated indices. Every time an index is

repeated the number of summations decreases by one. In the
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one repeated index while there are only N 3 terms with two

repeated indices• The terms with one repeated Index are

assumed to represent the dominant correction to the Landau

solution.

/ ,9-/

There are, in general, -5 (_)-/)(O-_)A/ terms with one

repeated index in the _)th term of the solution for t_ 0_)
/

Since each term is of _ (_)_.J the correction terms will have

a total contribution of (9 (& (Z)-I)(?)Q)) compared with the

"Landau" terms which have a contribution of (_(_) . These

two types of terms contribute equally to the solution when

_~_.

In order to estimate the time at which the l) th term

becomes of _J) we consider the solution for _ (//_) in the

form (3.2-20) and assume that the function _(_) may be

represented by a delta function in velocity space• The

quantity L(ip) becomes

,- .... , ,_c',)

J p,iz.._, ' -n_I

If the lntermolecular potential is assumed to be the Coulo_

/

potentlal (_I(K) =_ ) then the series in powers of L(_p)

(equation (3.2-20)) becomes

,t+Lxp =i-j. #-,...

If we take a term by term inverse Laplace transform (the

series ( B-4 ) ls multiplied by the quan_z_#_.l_./_,z_'_/_ J "/_"_ )
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we obtain a series solution in which the _ th term contains

the factor /(_-/), (the inverse Laplace transform of

_/p_ is _'_/,n-,_; ). _Is q_.tity whiohis sen

initially will be of O(J) when

t "7*-j ._ (_)-;)/ (B-5)

If Stlrling's approximation is used for the factorial we find

in the limit of large

or

"_ _L) (B-6)

We have shown above that the correction terms will have the

same order of magnitude as those retained when _ _.

Comparing this result with (B-6) we see that the correction

terms can be expected to contribute significantly to the

solution for _ (lit) when _-_ . When we remember

that time has been normalized with respect to the plasma

n f, ._,,,v-I_,/
frequency we see that the solution for _(//t)=j(_j _ (/Jr)

agrees with the Landau solution for times which are less

than _-_ plasma periods.
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APPENDIX O

RULTIPI_ OPERATORS

C.1 Introduction

in Chapter 5 that the term _)_(t/_0) _)We have shown

reduces, upon an integration over (N-l) velocities, to dif-

ferent forms which depend upon the nature of the function

_N,/(/) . T_e reduced function _S/(,)=_o_f'S _t/) is

required to be symmetric in the velocities in the set {5-J} .

However, this symmetry may be obtained from a summation of

/5/
S-] functions of the form DI C/l/) or from a double

SUm over i and j in the set {S-/_ of the functions

in general, symmetric to an intervhange of the index

, _,S_/ ,
with any other index in the set {S-I} and 2 (/l_,j) is not

symmetric to interchange of _ and _" with any other index

in the set _S-13 . We can imagine a hierarchy of these

v45,/
functions where the required symmetry of each number On (I)

is obtained from /_ summations over the set _ S "/_' •

(,2: Z •'JZ ¢
i j n

(C.I-I)
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We consider only the lowest members of the hierarchy in

this Appendix. The extension of the results _¢ other

members may be accomplished entirely by the methods which

are presented.

We consider two problems. First, the hierarchy of
,.N,/ .

functions _ (/) Is generalized in Section 0.2 to

include flmctlons of the form 0n (/a) and a 0a3) which are

symmetric In the indices 1,2 and the indices 1,2,3, respect-

consider the product of two _ (_) operatorsIvely. We

wlth the function _n (/a) and of three _(t) opePators

wlth the function --<_3(/_3). The forms to which these terms

reduce upon an integration over the extra velocities Is

determined. The extension of these results to _ _ (_)

.
operators and the function _ (_D_) Is straightforward.

The functions _n (_D]) are assumed In Section 0.2 to possess

a glven set of properties. The second problem Is to show

that the functions <_u({O_)" which arise In the solutions

for ffl) and /%_/.?) have these stated properties. Thls

ls the business of Section C.3.

0.2 Reduction with Rulttple Operators

The hierarchy of functions '_N'I(/)_ discussed In

Chapter 5 Is generallzed to Include functions with more than

one spatial vamlable. The generalized functions <'%%{_lt)--

ame, in general, functions of time. The _educed functions

_< (_l)_'t)obtained f_o. <_#r{_'_)by. integl-atlon
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over N-5 velocities in the set {N-I_j have the following

propez_les.

a) The t_mction --_o&'O({_l_) is symmetric in all

velocities in the set {S-_} and may be written as a product

of t,he Danction _o_/r.,) t_J It) _d 5- V _otlo.s ot

velocity _ (_") .

J
(c.2-I)

The functions _')

b) The f_nction

sum Of 5 - _) terms

are independent of time.

_ (_D_ I_) may be written as the

= . . ilt) (c.2-2)

w.her,e

with any other index in the set

is not symmetric to the interchange of'

{S -/)] • This function may

in general be factored in the following way

_),I,_)
The_otio. /_, ({v}l#l_) has_h,prope=tythat

(c.z-3)

._+40
= 0 (c._-_)
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c) The f_nction

double s_n

may be written as a

I..S_ .
where /_2 @_iz#l_) i, not sylaetrlc to the interchange Or

the indices _ and _ , or to the interchange of either

of these indices with another index in the set _S-_ . The

_o,on _I{_J_l*> _,_. _ao_o,_..

(c.2-5)

(c.2-6)

This f_nction also has the property

(c.2-7)

The extension o£ these results to other £unctlons n (f_It)

o£ the hieParchy is stPalghtforward.

0.2.1. The £irst example to be studied is

('%
The notation denotes the element

(c.2.1...1)

o o o
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.A

in velocity space. The function _o {/_) is not in this case

a function of time. Since the _(_3_C//_,_ operator is known

explicitly only in terms of th_ Laplace transform variable

_, we take a Laplace transform of (C.2.1-1) and use the

conTolutioD theorem to write /

pt
_ (/_) =

i

Z

(o.2.1-3)

The products of thence two operators

may be written as
and t_)_ (_ _p-_)

O0

%p =0

(c._.l-_)
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where

In general

X

l

c_ summations
(c.2._-5)

__,q,_._•..
J

summations

If the faetor_l form (C.2-1) of the _unctlon

then

(/_) _s used,
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7

• / _ _i_ _:,/

f _.. N-_ .N,_. A_,_

(c._.i-6)

• g,,_ _-I

, d_d_ (p,,.:_)(p_f>, .

It is not difficult to show from these results that

.- <_p:o ,. ", .

(C._.i-?)

lllller_the Ls_.aue ope_atoF _ ('# }/-/q) has been defined In

Ohapte_ B (3.3-7)- We take an inverse Laplace transform to

establish the final result

(0._.i-8)
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0.2.2. The next member of the hierarchy is _(/_)$) .

The product of two _(t) operators and _N'2(J_Jt_ always

appears as a convolution integral of the following form.

% L,_II/ (C.2.2-I)

A Laplace transform is taken and the convolution theorem

used to rewrite (0.2.2-1) as

r

(c.2.2-z)

It" (C.2.2-2) is lntegz_ted o_rer the velocities /_2"''

and expressions of the form (C.2.1-3) used rot t_e

operators the terms or (¢.2.2-2) may be written, am in

section (g.2.1)

j#l---

(_1.2.2-3)

The first term of (C. 2.2-_) (o( =p = 0 ) vanishes by the
• _Nt2

condition (C.2-/4) on the function _ (,=/p). We find f_)m

the relation (C.2-3)

,.

X

( C. 2.2-_ )
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In general

-"'_-_- _,O_lp) =

The sum of the terms (C.2.2-3) can be shown to be equal to

and we find from the inverse Laplace transform of (0.2.2-6)

_ C#,_l'r) =

(c._._-7)

,3,._
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C.2.3. The next member of the hierarchy is _(/_Jf) . Once

again this function always appears with the ? (t) operators

in a @onvolution inte_al.

(c.s.3-I)

We take a Laplace trans form of (C. 2.3-I), integrate over the

velocities 4"" "/_N and use the form (C.2.1-3) for the

operators to _Ite

_2 po f _,2

oo (0.2.3-2)
/ f f __, _v-2,._.__ _

c, _, _r,p--o

The first three terms (_=0,/3=o; o<=l,i_=O; o<=o.,/3=I ) or

(0.2.3-2) are zero by the condition (0.2-7). For CX'= 0 ,

•p -->_- , we find

,,,0,,o)-

, i ¢,_ .'t,a

..'L,,_
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The terms for p= © , o_ ->_ may be obtained from (C.2.3-3)

by _terch--s_S _ _d p-_ , _< _d p ,,. and the
indices 1 and 2. The general term _o_ c_jp >- _ ls not

shown; its fore may be determined by the methods discussed

above. ;When these _esu!ts are combLu_d we find

(c.s.3-_)

These same methods may be used to extend these results to

,_

other members of the hierarchy of functions (_n (1,_)

The problem of _hr_e _ (_) operators is handledC.2._.

in much the _Mm way as was the case of the two operators.

We consider the simplest case of the function (103) .

This f_nctlon is in all cases independent of time and the

problem is fo_/ated as

{ { { ,--,' (c._.,_-,)
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We take a Laplace transform and use the convolution theorem

to _lte (C.2._-l) as a double convolution integr_l. Substi-

lnteKrate over the Telooitles (N-3) to re'lie

t Z,.r _. N-3 ._, N,3o/[ e -# J(E_7) _, (/It)_(._It)_(31t)_o(,_3):

oo

(c.2.4-2)

where the element in _eloolty space

The first index

second /3 with

We have

/¢-3

O( is associated with _, (//_) • the

_z ('_ }/_Oz) and the third _ with

S ..., N-3_ N,3

3,9

=......

_/-3 , IV,3
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In general, for c_j_j_ _ 0 , we find

f .._ a/-3__ . . .
- _ _, -J_d_ ._p, _'_ _ . ._ .

The te_ (C.2./4-3), when s_d, are equal to the product

of three -_ (;7o) operators. We find, upon taking an

inverse Laplace tr_msfom

The extension of these results to the next f_uotlon

_3(/_]_) Is accomplished by combining the abo_e

methods with those of section C.2.2. We find a sum of three

terms.

(c.2._-_)

(c.2._-5)
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The reduction of other f_nctlons

determined by these same methods.

I_ ii ii

_3

b,

C.2.5. We will find in section C.3 of this appendix that

the above results m_st be extended to cases for whleh the

velocity integration is over only (N-S) velocities rather

than (N-2) as In sections C.2.1 - C.2.3 and (N-3) as in

section C.2.4. The simplest problem is

_ N-5 ,,V,I
(c.2.5-1)

We take a Laplace transfo_ in time and substitute the form

(C.2.1-3) for the operator _._ (/14_) . The first term is
/-

I _ (,)"'
. fs-lJ . j/,/

#. /

(c.2.5-2)

where we have used the result (C.2-1) The set _S-/)

includes all those indices in the set _'Sj l except the

index 1. The second term becomes

i

.N,/

.I,I

fs-Jl • /d_ /7o ( 0

_,_'_._,

(¢.2.5-3)
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(C.2.5-1) and (C.2.5-2) that ee a_e s_Jnply producing the

term of the operator _ (/_) multiplied by the quantity
"v

v"

inverse Laplace t:_usfoz_a

(c.2.5-4)

C.2.6. The next term to be considered is

 c,,tl (0.2.6-1)

The primary difference between (C.2._-1) and the result

obtained (for S = I) In Chapter 6 of the text is that there

are DOe some terms present which vanished earlier. For

Instance, the first term of (C.2.6-1) Is, after a Laplace

tr_Lusfoz_ has bee_ taken

_,#. A

(i)

p ,.-..-
fs-I.t ._1

: T-_/2,<,d> (C.2.6-2)

These terms vanlsh If we Integrate over the velocities in

the set {,,,f-l..} , In a_eement with the result of Chapter 6.

The second term becomes
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J"(d J "r'P -

fs.) , ,_sJ _ ,. . ._)

• lJ 7 fvi4 _'_
(0.2.6-3)

The n th term of the expansion conslsts of two

terms

dlf_erent

The first group oftemms of (0.2.6-_) may be separated into

those which contribute to the second term in the operator

first term in the operator S_(4ilp) - The second term of

(C.2.6-4) contributes to the second term of the operator

S_ (4/_ . If these results are combined we find, after

an inverse Laplace transform
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+

(0.2.6-5)

We note in passinE that the second term of (C.2.6-5) contains

a s_tion o,ertheindex: intheset{S-/_. Eachterm

of this sumaation is not syn_etnic to an interchar_e of the

velocity _ with the other velocities in the set {S-I} .

The proper syn_etry is obtained only after the summation

ove_ the index _ . l_u_ther, each term of the summation

vanishes upon an Integration over the velocity ,/_ °

C.2.7. These results may be extended to the next function

(1) of the hierarchy. Three terms are found in addi-

tion to the ode shown in Chapter 6. Two involve a sinEle

sum and the third a double sum over the set {5-/_ . The

first term of the operator _(/l_) is

' ---- = _/I ¢;c_,J/--_-,=-= (c.2.7-I)
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The second ter_ becomes

9-

{s-d . Cs-O _/
(c.2.7_2)

Note that If the z'elatlons (0.2.7-1) and (0.2.7-2) are Inte-

grated over the velocities (5-0 all terms vanlsh°

There are three different contributions to the thlrd

term of the expansion o£ _(,120 )

+=al_Ae_,_÷,e._,.j,e,Tf>+,.e_p.,.e_=

,e

(i lJ,7)+D:(;I;#,_)
_,--.7o+i .,_

l(

f.+_,,)(,_,c,_;,,)*Ar,_.:_)

{ s-_} . {s-,; . __

77" '_,,.,J--.-. d_

(¢.2.7-3)
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The first ter_ of (C.2.7-3) Is similar to the_:first term

Cr,)/
in the expansion of' the operator _, t/_ilj_/O) (see (6.2-29)).

Indeed, the fourth and fifth terms in the expansion of _/(Hp)

contribute other parts of this 9perator. Each term is

multiplied by the factor __ _[/-4J') and is symmetric in

the velocities in the set _$-/_ . The second term of

(C.2.7-3) and the first term of (Ci2.7-2) are the first two

elements in the expansion of the oper_toe SF, (/,H_) • These

terms all have one index in the set _S-J_ which is not

symmetric to lntercbJange wlth the other tndlces in that set.

Finally, the last terms of (C.2.7-2) and (C.2.7-3), when

combined wlth (C.2.7-I) form the first three elements in the

expansion of _(/I_) • Each member has two asymmetric

indices In the set {S-I_ • These _esults are combined to

write

(c.2.7-_)
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The extension of these results to multiple operators and

the functions _/_3 and (/23) is accomplished

by the methods discussed in the first parts of this section.

C.3 Soumce of the Functions _'_ ({_]).

We consider in this section the source of the functions

_a_'_({D]) which have been simply defined and then used in

Section 2 of this appendix. The initial value functions

_O,{V_,_--_,(I _ are all functions of the form _o ({_])

since, when we Integlnate ove_ the velocities {N-5} we

obtain a single term which is completely symmetric in the

velocities {S-_j . The second term in the solution (5.4-4)

{,,i-0 3 ,43

.e ,ho inChapte=5 =', ogjt--o)

iS a function of the form --,_"(S/T) _ • A slmple''_ extension

of these ar@_uments can be used to show that the facto_

_v _' _, _ _.....

in the second term of the solution for

a function of the form _Q(t_) .

The third term in the solution fop

(c.3-_)

.., (/_I t) is

(/It] contains

(C.3-3)
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In order to determine the functional form of (0.3-3) we

integrate oTer the velocities {N-5_ to obtain

Thefaetor

the form _N,3 (/_ S+I) . To illustrate we integrate the

former function over the Telocltles N-I_ (where /2 > 5*/ ).

If both _ and r_ are in the set {N-_j then the term wlll

vanish. The only non-zero terms are those for which the

index 2 is In the set {B-3} • The sum oTer the index /_

will contribute _-3 terms for tn in the:set _-3_ and

N-/l÷3 terms for n2 in the set {N-n÷3 3 . If we require that

/_ • N the contribution of the first group of ter_s ls

very small, and we find (see a_so (6__9-5) _eors similar

au_galent)

-I_ I .. i ,,
(Sin).__ (/_/_=l¢)_ _(/9]= It= o) --

_ ,m *,G,, __
(C.3-5)

_-_..} _.. ,. /,n+/,,r

whleh we may mew_te as

whleh ls a functlon of the form • The results ,"
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of sections C.2.4 and C.2.6 can be used to establish the

follo_nK

The result (C.3-7) _d_en used "In (C.3-I-I.) Indicates that (¢.3-II .)

/_5'/(_Ii)
:1.smade up of' t_o types of' te_ms, some of' the £oz'm --_

and othe,, o£ the t'o_ _:"(llt_') • We _Ind

• _ ,,, .-,, .. .
0 _ ..__nl

(c.3-8)

.,,,
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We see that quantities with two uns_etrlo indices arise in

the third term of the solution for _ (/i_) . Similarly,

terms with four unsymaetric lndices will ar_se in the fourth

term of this solution, and so on. We have by no means

exhausted the oombl_ations of operators and functions that

arise in the _ed_ctlon of the solutions for the single and

two-particle distribution functions. However, all the tez_as

can be evaluated by a straightforward application of the

methods presented and discussed above.
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APPmDIX D

LAPLACE CON'VOLU'I_ON I_/'I_RAI._

is used to simplify the form of

We note that there is no pole at the point _=##_+_

on the right-hand side of (D_2). However, it is convenient

to treat each term on the _lght-hand side of (D_2) separately,

in which case each has a pole at this point. We a_e at

liberty to choose on which side o_ the co, tour C this pole is
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to lie, provided we a_e consistent In ou_ cholce. The

relation (D--l) ls the only one needed to reduce the ter_

to fo_m wher_ they can be evaluated by a sie_!e application

of the method of residues.

The followlnE three redes _ equation (7.3-13) for

the two-parti@le OorTelatlon f_motlc_ are to be considered

/ d x

(D,3)

With a repeated application of the relation (D_I) one can

show that these terms, _eferTed to as the first, second and

thl__d tez_s, respectively, reduce to the following forms.

FIRST TERR:
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SECORD TERM:

l , /_.L_

We have made use of the definitions of the operators

(D,-6)

"" (m.-7)

The oontouz" C passes to the z_Lght of the poles of -'_= (O]p)

and to the left of the poles of _, ("///o_÷p_,#_,,Q_,_

Three new poles have been introduced Snto the p-plane by the

use of the relations (D.1) and (D-2). We choose to put the

comtou_ C to the might of the new poles at _O=p_ and

p--_ *2_, and to the left of the new pole at
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has been considered In C%mpter 7 of the text. Thus, If ve

and _(_Ip) (see (D.7)) and the first telqns within the

bz'aeMets { t of (D-4) and (D.-5) we f'lnd

X

(D._)

The lnverslon oontou_ is closed to the left. The lnte_and

vanishes at least as ( t/703 ) In the linL%t of large 70 so

that the only contributions to the lnteE_Ll come from the

Laplace tl-ansform of (D-8) becomes

x

i

* ,
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which reduces after some aigebraic manipulation to

(D-lO)

The next group of terms to be combined ame those in

(Dr4)-(D_6) which come from the second part of the operator

opemator _ (_ l_) . These term are grouped in the following

way

(D.11)

The poles of _(/}/_÷/_÷2_._.-p) lle to the right of the

contottr C. The inversion contour for the _irst three terms

of (D:ll) is therefore closed to the left. The lnte_and of

(D.11) vanishes along the contour at infinity so that the

only contributions to the tlmst three terms of (D.11) cme



from the poles at _=-_'E2"_ , _=_F z and _--_÷_a

These terms beoome after some algebraic reduction

The fourth term of (D=11) is evaluated by closing the inversion

contour to the right. All the poles of this term lie to the

left of the contour C, and there are none inside the curve

when mlosed to the _ht. This term vanishes, and (D_12) is

the eo_plete eont_Ibuti_m of the te_ns in (D.-ll).

The next group of terms are those which come from the

the second part Of the operator _(_1_) . These teI_s are
"Z f "
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_",,e _st t,hree terms of t_D-_3) may be combined with the

result

(D-14)

The poles of _ (,_120) lle to the left of the contour C

so that the first three terms of (D-13) are evaluated by

closing the Laplace contour to the right. Once again the

InteEz_nd vahlshes along the contoum at infinity. There are

no poles inside the contour so that the inteEral (D-I_) is

zero. The only contribution to (D-13) comes from the fourth

term. The inversion contour is closed to the left. The

omly pole inside the contour is the one at /3

and we find

(D-15)

The last Eroup of terms consists of those which come

and _(Q)_) • We reazTange the order of (D-_)-(D-6)

slIEhtly to write these tez_s in the followlng way.
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_ : i_ L _": ii_iiii_iI

+

(D-16)

+

The inverse Laplace transform of the first group of terms

(those within the brackets [ ] ) is complicated by the

presence of the poles of _F, (a]_o) on the left-hand slde of

rlEht-hand side of C. We are unable to evaluate each term

conveniently by closinE the contour either to the left of to

the rlEht. However, these te_ms vanish when added together

and do not contribute to the integral. The next _o last

term of (D-16) is evaluated by closing the contou_ to the

rlEht. There are no poles inside the contour, and this term

contributes nothing. The last term may be evaluated by

closing the contour to the left. The only pole inside the

contour Is the one at p :.Z_+_.._ , and we find/_f,1 -#c
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If the ceDtr2but2on, (D.-IO), (D.-'12), (D.'-lS) and (DT.17) are

added together the conTolution 2nte_al (I_.B) may be written

in _._he _ _ollow2ng way

whieh is exactly cancelled by the ter_

(D-19)

_om the p_odu_t _C/)_z(_ ) Of two s2n_le pax_Icle funct2on8.
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TABLE I

SUNNARY OF OPERATORS

A) Expllolt form of the operators

• r d_,,

I

Se(_) , _0) . f .a_ i2)? (_)

In general:

( ,___Z>_(_
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B) The operators satisfy the following equations

_(,_t:oj : t

S_0,il_:o):o

In general

(n) ,

O,216',.,.,m,_lt:o) =o
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